BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28810701)

  • 1. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Gardner RC; Jiranek V
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28810701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yeast TUM1 affects production of hydrogen sulfide from cysteine treatment during fermentation.
    Huang CW; Walker ME; Fedrizzi B; Roncoroni M; Gardner RC; Jiranek V
    FEMS Yeast Res; 2016 Dec; 16(8):. PubMed ID: 27915245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast genes required for conversion of grape precursors to varietal thiols in wine.
    Santiago M; Gardner RC
    FEMS Yeast Res; 2015 Aug; 15(5):fov034. PubMed ID: 26038341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide.
    Kinzurik MI; Herbst-Johnstone M; Gardner RC; Fedrizzi B
    Food Chem; 2016 Oct; 209():341-7. PubMed ID: 27173572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MET2 affects production of hydrogen sulfide during wine fermentation.
    Huang C; Roncoroni M; Gardner RC
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):7125-35. PubMed ID: 24841117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts.
    Harsch MJ; Gardner RC
    Appl Microbiol Biotechnol; 2013 Jan; 97(1):223-35. PubMed ID: 22684328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae.
    Linderholm AL; Findleton CL; Kumar G; Hong Y; Bisson LF
    Appl Environ Microbiol; 2008 Mar; 74(5):1418-27. PubMed ID: 18192430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context.
    Huang CW; Walker ME; Fedrizzi B; Gardner RC; Jiranek V
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28830086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of fermentation rate changes on potential hydrogen sulfide concentrations in wine.
    Butzke CE; Park SK
    J Microbiol Biotechnol; 2011 May; 21(5):519-24. PubMed ID: 21617350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis.
    Li Y; Zhang Y; Liu M; Qin Y; Liu Y
    Food Microbiol; 2019 Jun; 79():147-155. PubMed ID: 30621870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
    Walker ME; Zhang J; Sumby KM; Lee A; Houlès A; Li S; Jiranek V
    Yeast; 2021 Jun; 38(6):367-381. PubMed ID: 33560525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QTL mapping reveals novel genes and mechanisms underlying variations in H2S production during alcoholic fermentation in Saccharomyces cerevisiae.
    De Guidi I; Serre C; Noble J; Ortiz-Julien A; Blondin B; Legras JL
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38124683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen sulfide production during early yeast fermentation correlates with volatile sulfur compound biogenesis but not thiol release.
    Hou R; Jelley RE; van Leeuwen KA; Pinu FR; Fedrizzi B; Deed RC
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 37279910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma.
    Swiegers JH; Capone DL; Pardon KH; Elsey GM; Sefton MA; Francis IL; Pretorius IS
    Yeast; 2007 Jul; 24(7):561-74. PubMed ID: 17492802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen.
    Jiranek V; Langridge P; Henschke PA
    Appl Environ Microbiol; 1995 Feb; 61(2):461-7. PubMed ID: 7574581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases.
    Düring-Olsen L; Regenberg B; Gjermansen C; Kielland-Brandt MC; Hansen J
    Curr Genet; 1999 Jul; 35(6):609-17. PubMed ID: 10467005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GLO1 Gene Is Required for Full Activity of O-Acetyl Homoserine Sulfhydrylase Encoded by MET17.
    Kinzurik MI; Ly K; David KM; Gardner RC; Fedrizzi B
    ACS Chem Biol; 2017 Feb; 12(2):414-421. PubMed ID: 27935278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.
    Santiago M; Gardner RC
    Yeast; 2015 Jul; 32(7):519-32. PubMed ID: 25871637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen sulfide synthesis in native Saccharomyces cerevisiae strains during alcoholic fermentations.
    Wang C; Liu M; Li Y; Zhang Y; Yao M; Qin Y; Liu Y
    Food Microbiol; 2018 Apr; 70():206-213. PubMed ID: 29173629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a method to measure hydrogen sulfide in wine fermentation.
    Park SK
    J Microbiol Biotechnol; 2008 Sep; 18(9):1550-4. PubMed ID: 18852511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.