BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28810701)

  • 21. Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast.
    Andréasson C; Neve EP; Ljungdahl PO
    Yeast; 2004 Feb; 21(3):193-9. PubMed ID: 14968425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
    Chen Z; Zhang X; Li H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217845
    [No Abstract]   [Full Text] [Related]  

  • 23. Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: genome wide screen reveals a central role of the vacuole.
    Winter G; Cordente AG; Curtin C
    PLoS One; 2014; 9(12):e113869. PubMed ID: 25517415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation.
    Bartra E; Casado M; Carro D; Campamà C; Piña B
    J Appl Microbiol; 2010 Jul; 109(1):272-81. PubMed ID: 20059614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Indications of the prominent role of elemental sulfur in the formation of the varietal thiol 3-mercaptohexanol in Sauvignon blanc wine.
    Araujo LD; Vannevel S; Buica A; Callerot S; Fedrizzi B; Kilmartin PA; du Toit WJ
    Food Res Int; 2017 Aug; 98():79-86. PubMed ID: 28610735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper-based grape pest management has impacted wine aroma.
    De Guidi I; Galeote V; Blondin B; Legras JL
    Sci Rep; 2024 May; 14(1):10124. PubMed ID: 38698114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae.
    Kaur J; Bachhawat AK
    Genetics; 2007 Jun; 176(2):877-90. PubMed ID: 17435223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of serine and serine synthesis genes on H
    Li Y; Zhang Y; Ye D; Song Y; Shi J; Qin Y; Liu Y
    Food Microbiol; 2022 May; 103():103961. PubMed ID: 35082078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of polysulfides in Saccharomyces cerevisiae cells and finished wine from a cysteine-supplemented model grape medium.
    Huang CW; Deed RC; Parish-Virtue K; Pilkington LI; Walker ME; Jiranek V; Fedrizzi B
    Food Microbiol; 2023 Feb; 109():104124. PubMed ID: 36309435
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GLR1 plays an essential role in the homeodynamics of glutathione and the regulation of H2S production during respiratory oscillation of Saccharomyces cerevisiae.
    Sohn HY; Kum EJ; Kwon GS; Jin I; Adams CA; Kuriyama H
    Biosci Biotechnol Biochem; 2005 Dec; 69(12):2450-4. PubMed ID: 16377908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.
    Mendes-Ferreira A; Barbosa C; Jimenez-Marti E; Del Olmo ML; Mendes-Faia A
    J Microbiol Biotechnol; 2010 Sep; 20(9):1314-21. PubMed ID: 20890097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The timing of diammonium phosphate supplementation of wine must affects subsequent H2S release during fermentation.
    Mendes-Ferreira A; Barbosa C; Inês A; Mendes-Faia A
    J Appl Microbiol; 2010 Feb; 108(2):540-9. PubMed ID: 19663816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrogen sulphide production by Saccharomyces cerevisiae UCD 522 in a synthetic grape juice medium deficient of thiamin (vitamin B
    Xing H; Edwards CG
    Lett Appl Microbiol; 2019 Nov; 69(5):379-384. PubMed ID: 31513285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TORC1 controls degradation of the transcription factor Stp1, a key effector of the SPS amino-acid-sensing pathway in Saccharomyces cerevisiae.
    Shin CS; Kim SY; Huh WK
    J Cell Sci; 2009 Jun; 122(Pt 12):2089-99. PubMed ID: 19494127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae.
    Yoshida S; Imoto J; Minato T; Oouchi R; Kamada Y; Tomita M; Soga T; Yoshimoto H
    Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of fermentation temperature on volatile thiols concentrations in Sauvignon blanc wines.
    Masneuf-Pomarède I; Mansour C; Murat ML; Tominaga T; Dubourdieu D
    Int J Food Microbiol; 2006 May; 108(3):385-90. PubMed ID: 16524635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of linoleic acid on the Sauvignon blanc fermentation by different wine yeast strains.
    Casu F; Pinu FR; Fedrizzi B; Greenwood DR; Villas-Boas SG
    FEMS Yeast Res; 2016 Aug; 16(5):. PubMed ID: 27364827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection, growth, and chemo-sensory evaluation of flocculent starter culture strains of Saccharomyces cerevisiae in the large-scale production of traditional Brazilian cachaça.
    Silva CL; Vianna CR; Cadete RM; Santos RO; Gomes FC; Oliveira ES; Rosa CA
    Int J Food Microbiol; 2009 May; 131(2-3):203-10. PubMed ID: 19329211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium.
    Orozco H; Matallana E; Aranda A
    Mech Ageing Dev; 2012 May; 133(5):348-58. PubMed ID: 22738658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.