These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28810783)

  • 1. Self-consistent calculation of protein folding pathways.
    Orioli S; A Beccara S; Faccioli P
    J Chem Phys; 2017 Aug; 147(6):064108. PubMed ID: 28810783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational scheme to compute protein reaction pathways using atomistic force fields with explicit solvent.
    A Beccara S; Fant L; Faccioli P
    Phys Rev Lett; 2015 Mar; 114(9):098103. PubMed ID: 25793854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing Reaction Pathways of Rare Biomolecular Transitions using Atomistic Force-Fields.
    Faccioli P; a Beccara S
    Biophys Chem; 2016 Jan; 208():62-7. PubMed ID: 26320390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-atom calculation of protein free-energy profiles.
    Orioli S; Ianeselli A; Spagnolli G; Faccioli P
    J Chem Phys; 2017 Oct; 147(15):152724. PubMed ID: 29055321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dominant reaction pathways in protein folding: A direct validation against molecular dynamics simulations.
    Faccioli P; Lonardi A; Orland H
    J Chem Phys; 2010 Jul; 133(4):045104. PubMed ID: 20687692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient traversal of beta-sheet protein folding pathways using ensemble models.
    Shenker S; O'Donnell CW; Devadas S; Berger B; Waldispühl J
    J Comput Biol; 2011 Nov; 18(11):1635-47. PubMed ID: 21958108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics and folding pathways of trpzip2: an accelerated molecular dynamics simulation study.
    Yang L; Shao Q; Gao YQ
    J Phys Chem B; 2009 Jan; 113(3):803-8. PubMed ID: 19113829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective stochastic dynamics on a protein folding energy landscape.
    Yang S; Onuchic JN; Levine H
    J Chem Phys; 2006 Aug; 125(5):054910. PubMed ID: 16942260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Well Can Implicit Solvent Simulations Explore Folding Pathways? A Quantitative Analysis of α-Helix Bundle Proteins.
    Shao Q; Zhu W
    J Chem Theory Comput; 2017 Dec; 13(12):6177-6190. PubMed ID: 29120630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.
    Kukic P; Kannan A; Dijkstra MJ; Abeln S; Camilloni C; Vendruscolo M
    PLoS Comput Biol; 2015 Oct; 11(10):e1004435. PubMed ID: 26505754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations.
    Piana S; Klepeis JL; Shaw DE
    Curr Opin Struct Biol; 2014 Feb; 24():98-105. PubMed ID: 24463371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined Parameterization of Nonbonded Interactions Improves Conformational Sampling and Kinetics of Protein Folding Simulations.
    Yoo J; Aksimentiev A
    J Phys Chem Lett; 2016 Oct; 7(19):3812-3818. PubMed ID: 27617340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Markovian modeling of protein folding.
    Ayaz C; Tepper L; Brünig FN; Kappler J; Daldrop JO; Netz RR
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Model of Protein Energetics To Identify Ab Initio Folding Transitions from All-Atom MD Simulations of Proteins.
    Meli M; Morra G; Colombo G
    J Chem Theory Comput; 2020 Sep; 16(9):5960-5971. PubMed ID: 32693598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein folding kinetics and thermodynamics from atomistic simulations.
    van der Spoel D; Seibert MM
    Phys Rev Lett; 2006 Jun; 96(23):238102. PubMed ID: 16803409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium distribution from distributed computing (simulations of protein folding).
    Scalco R; Caflisch A
    J Phys Chem B; 2011 May; 115(19):6358-65. PubMed ID: 21517045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA folding pathways from all-atom simulations with a variationally improved history-dependent bias.
    Lazzeri G; Micheletti C; Pasquali S; Faccioli P
    Biophys J; 2023 Aug; 122(15):3089-3098. PubMed ID: 37355771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.
    Hu J; Chen T; Wang M; Chan HS; Zhang Z
    Phys Chem Chem Phys; 2017 May; 19(21):13629-13639. PubMed ID: 28530269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic quasi-Newton method: application to minimal model for proteins.
    Chau CD; Sevink GJ; Fraaije JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016701. PubMed ID: 21405789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing.
    Pande VS; Baker I; Chapman J; Elmer SP; Khaliq S; Larson SM; Rhee YM; Shirts MR; Snow CD; Sorin EJ; Zagrovic B
    Biopolymers; 2003 Jan; 68(1):91-109. PubMed ID: 12579582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.