These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 28811056)
1. Measurements of ionic concentrations along with endocochlear potential in wild-type and claudin 14 knockout mice. Shiraiwa Y; Daikoku E; Saito M; Yamashita Y; Abe T; Ono F; Kubota T Auris Nasus Larynx; 2018 Jun; 45(3):421-426. PubMed ID: 28811056 [TBL] [Abstract][Full Text] [Related]
2. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Ben-Yosef T; Belyantseva IA; Saunders TL; Hughes ED; Kawamoto K; Van Itallie CM; Beyer LA; Halsey K; Gardner DJ; Wilcox ER; Rasmussen J; Anderson JM; Dolan DF; Forge A; Raphael Y; Camper SA; Friedman TB Hum Mol Genet; 2003 Aug; 12(16):2049-61. PubMed ID: 12913076 [TBL] [Abstract][Full Text] [Related]
3. Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Wangemann P; Nakaya K; Wu T; Maganti RJ; Itza EM; Sanneman JD; Harbidge DG; Billings S; Marcus DC Am J Physiol Renal Physiol; 2007 May; 292(5):F1345-53. PubMed ID: 17299139 [TBL] [Abstract][Full Text] [Related]
4. Development of monovalent ions in the endolymph in mouse cochlea. Yamasaki M; Komune S; Shimozono M; Matsuda K; Haruta A ORL J Otorhinolaryngol Relat Spec; 2000; 62(5):241-6. PubMed ID: 10965258 [TBL] [Abstract][Full Text] [Related]
5. Effects of high intensity impulse noise on ionic concentrations in cochlear endolymph of the guinea pig. Li W; Zhao L; Jiang S; Gu R Chin Med J (Engl); 1997 Nov; 110(11):883-6. PubMed ID: 9772424 [TBL] [Abstract][Full Text] [Related]
6. Sodium, potassium, chloride and calcium concentrations measured in pigeon perilymph and endolymph. Sauer G; Richter CP; Klinke R Hear Res; 1999 Mar; 129(1-2):1-6. PubMed ID: 10190746 [TBL] [Abstract][Full Text] [Related]
7. Asphyxia and diuretic-induced changes in the Ca2+ concentration of endolymph. Takamaki A; Mori Y; Araki M; Mineharu A; Sohma Y; Tashiro J; Yoshida R; Takenaka H; Kubota T Jpn J Physiol; 2003 Feb; 53(1):35-44. PubMed ID: 12689356 [TBL] [Abstract][Full Text] [Related]
8. Endolymphatic Na⁺ and K⁺ concentrations during cochlear growth and enlargement in mice lacking Slc26a4/pendrin. Li X; Zhou F; Marcus DC; Wangemann P PLoS One; 2013; 8(5):e65977. PubMed ID: 23741519 [TBL] [Abstract][Full Text] [Related]
9. Some observations on negative endocochlear potential during anoxia. Konishi T Acta Otolaryngol; 1979; 87(5-6):506-16. PubMed ID: 463522 [TBL] [Abstract][Full Text] [Related]
10. Endolymphatic perfusion with EGTA-acetoxymethyl ester inhibits asphyxia- and furosemide-induced decrease in endocochlear potential in guinea pigs. Mineharu A; Mori Y; Nimura Y; Takamaki A; Araki M; Yamaji J; Yoshida R; Takenaka H; Kubota T Jpn J Physiol; 2005 Feb; 55(1):53-60. PubMed ID: 15796789 [TBL] [Abstract][Full Text] [Related]
11. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. Kitajiri S; Miyamoto T; Mineharu A; Sonoda N; Furuse K; Hata M; Sasaki H; Mori Y; Kubota T; Ito J; Furuse M; Tsukita S J Cell Sci; 2004 Oct; 117(Pt 21):5087-96. PubMed ID: 15456848 [TBL] [Abstract][Full Text] [Related]
12. Renal claudin-14 expression is not required for regulating Mg Ferreira PG; van Megen WH; Tan R; Lee CHL; Svenningsen P; Alexander RT; Dimke H Am J Physiol Renal Physiol; 2021 May; 320(5):F897-F907. PubMed ID: 33818126 [TBL] [Abstract][Full Text] [Related]
13. Effects of pure tone on endocochlear potential and potassium ion concentration in the guinea pig cochlea. Vassout P Acta Otolaryngol; 1984; 98(3-4):199-203. PubMed ID: 6496057 [TBL] [Abstract][Full Text] [Related]
14. Effects of CO2/HCO3- in perilymph on the endocochlear potential in guinea pigs. Nimura Y; Mori Y; Inui T; Sohma Y; Takenaka H; Kubota T J Physiol Sci; 2007 Feb; 57(1):15-22. PubMed ID: 17169167 [TBL] [Abstract][Full Text] [Related]
15. [Ion-selective microelectrodes: principle and application of in vivo measurements of ionic concentrations in cochlear endolymph]. Li W; Zhao L; Bao S Zhonghua Yi Xue Za Zhi; 1996 Feb; 76(2):135-7. PubMed ID: 8758448 [TBL] [Abstract][Full Text] [Related]
16. Time-related alteration of endolymph composition in an experimental model of endolymphatic hydrops. Sziklai I; Ferrary E; Horner KC; Sterkers O; Amiel C Laryngoscope; 1992 Apr; 102(4):431-8. PubMed ID: 1556894 [TBL] [Abstract][Full Text] [Related]
17. Ca(2+) regulation of endocochlear potential in marginal cells. Mori Y; Watanabe M; Inui T; Nimura Y; Araki M; Miyamoto M; Takenaka H; Kubota T J Physiol Sci; 2009 Sep; 59(5):355-65. PubMed ID: 19504169 [TBL] [Abstract][Full Text] [Related]
18. Physiological role of L-type Ca2+ channels in marginal cells in the stria vascularis of guinea pigs. Inui T; Mori Y; Watanabe M; Takamaki A; Yamaji J; Sohma Y; Yoshida R; Takenaka H; Kubota T J Physiol Sci; 2007 Oct; 57(5):287-98. PubMed ID: 17963592 [TBL] [Abstract][Full Text] [Related]
19. Effect of vestibular labyrinth destruction on endocochlear potential and potassium concentration of the cochlea. Ikeda R; Nakaya K; Yamazaki M; Oshima T; Kawase T; Kobayashi T Hear Res; 2010 Jun; 265(1-2):90-5. PubMed ID: 20045046 [TBL] [Abstract][Full Text] [Related]
20. Combined effects of adrenalectomy and noise exposure on compound action potentials, endocochlear potentials and endolymphatic potassium concentrations. Ma YL; Gerhardt KJ; Curtis LM; Rybak LP; Whitworth C; Rarey KE Hear Res; 1995 Nov; 91(1-2):79-86. PubMed ID: 8647728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]