BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28811113)

  • 1. Acrylamide-forming potential of cereals, legumes and roots and tubers analyzed by UPLC-UV.
    Galani JHY; Patel NJ; Talati JG
    Food Chem Toxicol; 2017 Oct; 108(Pt A):244-248. PubMed ID: 28811113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant activity of commonly consumed cereals, millets, pulses and legumes in India.
    Sreeramulu D; Reddy CV; Raghunath M
    Indian J Biochem Biophys; 2009 Feb; 46(1):112-5. PubMed ID: 19374263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free asparagine and sugars profile of cereal species: the potential of cereals for acrylamide formation in foods.
    Žilić S; Dodig D; Basić Z; Vančetović J; Titan P; Đurić N; Tolimir N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 May; 34(5):705-713. PubMed ID: 28150529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on effect of multiple heating/cooling cycles on the resistant starch formation in cereals, legumes and tubers.
    Yadav BS; Sharma A; Yadav RB
    Int J Food Sci Nutr; 2009; 60 Suppl 4():258-72. PubMed ID: 19562607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of starch in food processing: from raw materials to final food products.
    Delcour JA; Bruneel C; Derde LJ; Gomand SV; Pareyt B; Putseys JA; Wilderjans E; Lamberts L
    Annu Rev Food Sci Technol; 2010; 1():87-111. PubMed ID: 22129331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acrylamide Content of Experimental and Commercial Flatbreads.
    Crawford LM; Kahlon TS; Chiu MM; Wang SC; Friedman M
    J Food Sci; 2019 Mar; 84(3):659-666. PubMed ID: 30730568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nutrient mineral content in raw and processed foods derived from cereals and legumes. II: Mineral composition].
    Josefina Closa S; de Landeta MC; Andérica DA; Larroquette DO; Alzogaray B
    Arch Latinoam Nutr; 1996 Sep; 46(3):250-2. PubMed ID: 9429632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acrylamide in potato crisps prepared from 20 UK-grown varieties: effects of variety and tuber storage time.
    Elmore JS; Briddon A; Dodson AT; Muttucumaru N; Halford NG; Mottram DS
    Food Chem; 2015 Sep; 182():1-8. PubMed ID: 25842300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of consumer food preparation on acrylamide formation.
    Jackson LS; Al-Taher F
    Adv Exp Med Biol; 2005; 561():447-65. PubMed ID: 16438318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat.
    Curtis TY; Powers SJ; Halford NG
    J Agric Food Chem; 2016 Dec; 64(51):9689-9696. PubMed ID: 27977182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead and cadmium contents in cereals and pulses in north-eastern China.
    Zhang ZW; Watanabe T; Shimbo S; Higashikawa K; Ikeda M
    Sci Total Environ; 1998 Sep; 220(2-3):137-45. PubMed ID: 9810722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acrylamide reduction in potato chips by selection of potato variety grown in Iran and processing conditions.
    Shojaee-Aliabadi S; Nikoopour H; Kobarfard F; Parsapour M; Moslehishad M; Hassanabadi H; Frias JM; Hashemi M; Dahaghin E
    J Sci Food Agric; 2013 Aug; 93(10):2556-61. PubMed ID: 23580468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutritive value of the foods cultivated and consumed by the tribals of south India.
    Rajyalakshmi P; Geervani P
    Plant Foods Hum Nutr; 1994 Jul; 46(1):53-61. PubMed ID: 7971787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylamide in foods: occurrence, sources, and modeling.
    Becalski A; Lau BP; Lewis D; Seaman SW
    J Agric Food Chem; 2003 Jan; 51(3):802-8. PubMed ID: 12537461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources and intake of resistant starch in the Chinese diet.
    Chen L; Liu R; Qin C; Meng Y; Zhang J; Wang Y; Xu G
    Asia Pac J Clin Nutr; 2010; 19(2):274-82. PubMed ID: 20460244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccessibility of polyphenols from selected cereal grains and legumes as influenced by food acidulants.
    Hithamani G; Srinivasan K
    J Sci Food Agric; 2017 Jan; 97(2):621-628. PubMed ID: 27122477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation.
    Zhu F; Cai YZ; Ke J; Corke H
    J Sci Food Agric; 2010 Oct; 90(13):2254-62. PubMed ID: 20629114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistant starch content of Indian foods.
    Platel K; Shurpalekar KS
    Plant Foods Hum Nutr; 1994 Jan; 45(1):91-5. PubMed ID: 8146107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection criteria for potato tubers to minimize acrylamide formation during frying.
    De Wilde T; De Meulenaer B; Mestdagh F; Govaert Y; Ooghe W; Fraselle S; Demeulemeester K; Van Peteghem C; Calus A; Degroodt JM; Verhé R
    J Agric Food Chem; 2006 Mar; 54(6):2199-205. PubMed ID: 16536596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of an HPLC-UV Method for Free Asparagine in Grains].
    Yokozeki T; Nishikawa K; Ogiso M; Fujita K
    Shokuhin Eiseigaku Zasshi; 2017; 58(6):247-252. PubMed ID: 29311443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.