These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 28811145)
1. Characterization of methane oxidation in a simulated landfill cover system by comparing molecular and stable isotope mass balances. Schulte M; Jochmann MA; Gehrke T; Thom A; Ricken T; Denecke M; Schmidt TC Waste Manag; 2017 Nov; 69():281-288. PubMed ID: 28811145 [TBL] [Abstract][Full Text] [Related]
2. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation. Scheutz C; Cassini F; De Schoenmaeker J; Kjeldsen P Waste Manag; 2017 May; 63():203-212. PubMed ID: 28161333 [TBL] [Abstract][Full Text] [Related]
3. A mass balance model to estimate the rate of composting, methane oxidation and anaerobic digestion in soil covers and shallow waste layers. Rafiee R; Obersky L; Xie S; Clarke WP Waste Manag; 2017 May; 63():196-202. PubMed ID: 28089399 [TBL] [Abstract][Full Text] [Related]
4. An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation. Yao Y; Su Y; Wu Y; Liu W; He R J Hazard Mater; 2015; 283():871-9. PubMed ID: 25464331 [TBL] [Abstract][Full Text] [Related]
5. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials. Rachor I; Gebert J; Gröngröft A; Pfeiffer EM Waste Manag; 2011 May; 31(5):833-42. PubMed ID: 21067907 [TBL] [Abstract][Full Text] [Related]
6. Treatment of landfill gas with low methane content by biocover systems. Thomasen TB; Scheutz C; Kjeldsen P Waste Manag; 2019 Feb; 84():29-37. PubMed ID: 30691904 [TBL] [Abstract][Full Text] [Related]
7. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands. Nolasco D; Lima RN; Hernández PA; Pérez NM Environ Sci Pollut Res Int; 2008 Jan; 15(1):51-60. PubMed ID: 18306888 [TBL] [Abstract][Full Text] [Related]
8. Methane oxidation and attenuation of sulphur compounds in landfill top cover systems: Lab-scale tests. Raga R; Pivato A; Lavagnolo MC; Megido L; Cossu R J Environ Sci (China); 2018 Mar; 65():317-326. PubMed ID: 29548403 [TBL] [Abstract][Full Text] [Related]
9. Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? Gebert J; Röwer IU; Scharff H; Roncato CD; Cabral AR Waste Manag; 2011 May; 31(5):987-94. PubMed ID: 21074981 [TBL] [Abstract][Full Text] [Related]
10. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover. Kim GW; Ho A; Kim PJ; Kim SY Waste Manag; 2016 Sep; 55():306-12. PubMed ID: 27067424 [TBL] [Abstract][Full Text] [Related]
11. Closing the methane mass balance for an old closed Danish landfill. Fjelsted L; Christensen AG; Larsen JE; Kjeldsen P; Scheutz C Waste Manag; 2020 Feb; 102():179-189. PubMed ID: 31678804 [TBL] [Abstract][Full Text] [Related]
12. Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Stern JC; Chanton J; Abichou T; Powelson D; Yuan L; Escoriza S; Bogner J Waste Manag; 2007; 27(9):1248-58. PubMed ID: 17005386 [TBL] [Abstract][Full Text] [Related]
13. Effects of biochar and wood pellets amendments added to landfill cover soil on microbial methane oxidation: A laboratory column study. Yargicoglu EN; Reddy KR J Environ Manage; 2017 May; 193():19-31. PubMed ID: 28188986 [TBL] [Abstract][Full Text] [Related]
14. A comparative evaluation of the performance of full-scale high-rate methane biofilter (HMBF) systems and flow-through laboratory columns. Gunasekera SS; Hettiaratchi JP; Bartholameuz EM; Farrokhzadeh H; Irvine E Environ Sci Pollut Res Int; 2018 Dec; 25(36):35845-35854. PubMed ID: 30276693 [TBL] [Abstract][Full Text] [Related]
15. Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. Börjesson G; Chanton J; Svensson BH J Environ Qual; 2001; 30(2):369-76. PubMed ID: 11285896 [TBL] [Abstract][Full Text] [Related]
16. Methodology to determine the extent of anaerobic digestion, composting and CH Obersky L; Rafiee R; Cabral AR; Golding SD; Clarke WP Waste Manag; 2018 Jun; 76():364-373. PubMed ID: 29798807 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of simultaneous biodegradation of methane and toluene in landfill covers. Su Y; Zhang X; Wei XM; Kong JY; Xia FF; Li W; He R J Hazard Mater; 2014 Jun; 274():367-75. PubMed ID: 24801894 [TBL] [Abstract][Full Text] [Related]
18. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments. Fei X; Zekkos D; Raskin L Waste Manag; 2016 Sep; 55():276-87. PubMed ID: 26525969 [TBL] [Abstract][Full Text] [Related]
19. Screening methane-oxidizing bacteria from municipal solid waste landfills and simulating their effects on methane and ammonia reduction. Pan J; Wang X; Cao A; Zhao G; Zhou C Environ Sci Pollut Res Int; 2019 Dec; 26(36):37082-37091. PubMed ID: 31745784 [TBL] [Abstract][Full Text] [Related]
20. A centrifuge tube reactor for the determination of bacterial methane oxidation enrichment factors without influence of diffusion related isotope fractionation. Schulte SM; Jochmann MA; Wolbert JB; Gehrke T; Schmidt TC Sci Total Environ; 2019 Apr; 659():1382-1386. PubMed ID: 31096348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]