BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28811362)

  • 1. Nuclear Envelope Rupture Is Enhanced by Loss of p53 or Rb.
    Yang Z; Maciejowski J; de Lange T
    Mol Cancer Res; 2017 Nov; 15(11):1579-1586. PubMed ID: 28811362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells.
    Geisinger JM; Stearns T
    Nucleic Acids Res; 2020 Sep; 48(16):9067-9081. PubMed ID: 32687165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear envelope rupture and repair during cancer cell migration.
    Denais CM; Gilbert RM; Isermann P; McGregor AL; te Lindert M; Weigelin B; Davidson PM; Friedl P; Wolf K; Lammerding J
    Science; 2016 Apr; 352(6283):353-8. PubMed ID: 27013428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Nuclear Envelope Integrity in Aging and Disease.
    Robijns J; Houthaeve G; Braeckmans K; De Vos WH
    Int Rev Cell Mol Biol; 2018; 336():205-222. PubMed ID: 29413891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bursting the Bubble - Nuclear Envelope Rupture as a Path to Genomic Instability?
    Shah P; Wolf K; Lammerding J
    Trends Cell Biol; 2017 Aug; 27(8):546-555. PubMed ID: 28285738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bypassing Border Control: Nuclear Envelope Rupture in Disease.
    Houthaeve G; Robijns J; Braeckmans K; De Vos WH
    Physiology (Bethesda); 2018 Jan; 33(1):39-49. PubMed ID: 29212891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR screens are feasible in TP53 wild-type cells.
    Brown KR; Mair B; Soste M; Moffat J
    Mol Syst Biol; 2019 Aug; 15(8):e8679. PubMed ID: 31464370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined TP53 and RB1 Loss Promotes Prostate Cancer Resistance to a Spectrum of Therapeutics and Confers Vulnerability to Replication Stress.
    Nyquist MD; Corella A; Coleman I; De Sarkar N; Kaipainen A; Ha G; Gulati R; Ang L; Chatterjee P; Lucas J; Pritchard C; Risbridger G; Isaacs J; Montgomery B; Morrissey C; Corey E; Nelson PS
    Cell Rep; 2020 May; 31(8):107669. PubMed ID: 32460015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient nuclear envelope rupturing during interphase in human cancer cells.
    Vargas JD; Hatch EM; Anderson DJ; Hetzer MW
    Nucleus; 2012; 3(1):88-100. PubMed ID: 22567193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Breast Cancer Using CRISPR-Cas9-Mediated Engineering of Human Breast Organoids.
    Dekkers JF; Whittle JR; Vaillant F; Chen HR; Dawson C; Liu K; Geurts MH; Herold MJ; Clevers H; Lindeman GJ; Visvader JE
    J Natl Cancer Inst; 2020 May; 112(5):540-544. PubMed ID: 31589320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear envelope dynamics.
    Salina D; Bodoor K; Enarson P; Raharjo WH; Burke B
    Biochem Cell Biol; 2001; 79(5):533-42. PubMed ID: 11716295
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Marshall AE; Roes MV; Passos DT; DeWeerd MC; Chaikovsky AC; Sage J; Howlett CJ; Dick FA
    Mol Cell Biol; 2019 Aug; 39(16):. PubMed ID: 31138663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53.
    Subash-Babu P; Alshammari GM; Ignacimuthu S; Alshatwi AA
    Biomed Pharmacother; 2017 Mar; 87():388-396. PubMed ID: 28068628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted Perturbation of Nuclear Envelope Integrity with Vapor Nanobubble-Mediated Photoporation.
    Houthaeve G; Xiong R; Robijns J; Luyckx B; Beulque Y; Brans T; Campsteijn C; Samal SK; Stremersch S; De Smedt SC; Braeckmans K; De Vos WH
    ACS Nano; 2018 Aug; 12(8):7791-7802. PubMed ID: 30001106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of a tight squeeze: Nuclear envelope rupture and repair.
    Isermann P; Lammerding J
    Nucleus; 2017 May; 8(3):268-274. PubMed ID: 28287898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear envelope rupture is induced by actin-based nucleus confinement.
    Hatch EM; Hetzer MW
    J Cell Biol; 2016 Oct; 215(1):27-36. PubMed ID: 27697922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivating Mutations of RB1 and TP53 Correlate With Sarcomatous Histomorphology and Metastasis/Recurrence in Gastrointestinal Stromal Tumors.
    Merten L; Agaimy A; Moskalev EA; Giedl J; Kayser C; Geddert H; Schaefer IM; Cameron S; Werner M; Ströbel P; Hartmann A; Haller F
    Am J Clin Pathol; 2016 Dec; 146(6):718-726. PubMed ID: 28028119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in TP53, ZNF750, and RB1 typify ocular sebaceous carcinoma.
    Bao Y; Selfridge JE; Wang J; Zhao Y; Cui J; Guda K; Wang Z; Zhu Y
    J Genet Genomics; 2019 Jun; 46(6):315-318. PubMed ID: 31278009
    [No Abstract]   [Full Text] [Related]  

  • 19. Nuclear envelope rupture: little holes, big openings.
    Hatch EM
    Curr Opin Cell Biol; 2018 Jun; 52():66-72. PubMed ID: 29459181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Alterations of Both MEN1/ATRX and TP53/RB1 in Pancreatic Neuroendocrine Neoplasms.
    Zhang MY; He D; Zhang S; Liu JY
    Pancreas; 2022 Jul; 51(6):e91-e93. PubMed ID: 36206476
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.