These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28811449)

  • 21. Process Parameter Modeling and Optimization of Abrasive Water Jet Dressing Fixed-Abrasive Pad Based on Box-Behnken Design.
    Wang Z; Wang S; Ding Y; Yang Y; Ma L; Pang M; Han J; Su J
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Notes on the Abrasive Water Jet (AWJ) Machining.
    Gembalová L; Hlaváč LM; Spadło S; Geryk V; Oros L
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of Kerf Quality Characteristics of Kevlar Fiber-Reinforced Polymers Cut by Abrasive Water Jet.
    Gubencu DV; Opriș C; Han AA
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research into the Disintegration of Abrasive Materials in the Abrasive Water Jet Machining Process.
    Perec A
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300859
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of a jet abrasive instrument (Prophy Jet) on root surfaces.
    Petersson LG; Hellden L; Jongebloed W; Arends J
    Swed Dent J; 1985; 9(5):193-9. PubMed ID: 3866335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method.
    Barabas S; Florescu A
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analyses of Vibration Signals Generated in W. Nr. 1.0038 Steel during Abrasive Water Jet Cutting Aimed to Process Control.
    Tyč M; Hlaváčová IM; Barták P
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical Modeling Method for Material Removal Characteristics of Abrasive Water Jet Polishing under Rotating Oblique Incidence.
    Zhang Z; Song C; Shi F; Tie G; Zhang W; Wang B; Tian Y; Hou Z
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical study of the synergistic effect of cavitation and micro-abrasive particles.
    Fu Y; Zhu X; Wang J; Gong T
    Ultrason Sonochem; 2022 Sep; 89():106119. PubMed ID: 35969914
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Utilization of ultrasound to enhance high-speed water jet effects.
    Foldyna J; Sitek L; Svehla B; Svehla S
    Ultrason Sonochem; 2004 May; 11(3-4):131-7. PubMed ID: 15081969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Use of a High-Pressure Water-Ice Jet for Removing Worn Paint Coating in Renovation Process.
    Chomka G; Chodór J; Kukiełka L; Kasperowicz M
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possibilities of Rock Processing with a High-Pressure Abrasive Waterjet with an Aspect Terms to Minimizing Energy Consumption.
    Chomka G; Kasperowicz M; Chodór J; Chudy J; Kukiełka L
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of heart rate on centerline velocities of pulsatile intracardiac jets: an in vitro study with laser Doppler anemometry and pulsed Doppler ultrasound.
    Cagniot A; Cape EG; Walker PG; Yoganathan AP; Levine RA
    J Am Soc Echocardiogr; 1992; 5(4):393-404. PubMed ID: 1387317
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel cavitation fluid jet polishing process based on negative pressure effects.
    Chen F; Wang H; Tang Y; Yin S; Huang S; Zhang G
    Ultrason Sonochem; 2018 Apr; 42():339-346. PubMed ID: 29429678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface roughness and material removal in fluid jet polishing.
    Fang H; Guo P; Yu J
    Appl Opt; 2006 Jun; 45(17):4012-9. PubMed ID: 16761040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Evaluation of potential risks of abrasive water jet osteotomy in-vivo].
    Kuhlmann C; Pude F; Bishup C; Krömer S; Kirsch L; Andreae A; Wacker K; Schmolke S
    Biomed Tech (Berl); 2005 Oct; 50(10):337-42. PubMed ID: 16300049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water jet: a promising method for cutting optical glass.
    Salinas-Luna J; Machorro R; Camacho J; Luna E; Nunez J
    Appl Opt; 2006 May; 45(15):3477-81. PubMed ID: 16708091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid jet-array parallel machining of optical microstructure array surfaces.
    Wang C; Cheung CF; Liu M; Lee WB
    Opt Express; 2017 Sep; 25(19):22710-22725. PubMed ID: 29041578
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of water-jetting technology in prostheses revision surgery-first results of parameter studies on bone and bone cement.
    Honl M; Rentzsch R; Müller G; Brandt C; Bluhm A; Hille E; Louis H; Morlock M
    J Biomed Mater Res; 2000; 53(6):781-90. PubMed ID: 11074437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the forming mechanism of the cleaning airflow of pulse-jet fabric filters.
    Cai J; Hao W; Zhang C; Yu J; Wang T
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1273-1287. PubMed ID: 28379118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.