These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 28811466)

  • 1. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
    Jamsen JA; Beard WA; Pedersen LC; Shock DD; Moon AF; Krahn JM; Bebenek K; Kunkel TA; Wilson SH
    Nat Commun; 2017 Aug; 8(1):253. PubMed ID: 28811466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide.
    Jamsen JA; Sassa A; Shock DD; Beard WA; Wilson SH
    Nat Commun; 2021 Apr; 12(1):2059. PubMed ID: 33824325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair.
    Jamsen JA; Sassa A; Perera L; Shock DD; Beard WA; Wilson SH
    Nat Commun; 2021 Aug; 12(1):5055. PubMed ID: 34417448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evidence for an in
    Loc'h J; Gerodimos CA; Rosario S; Tekpinar M; Lieber MR; Delarue M
    J Biol Chem; 2019 Jul; 294(27):10579-10595. PubMed ID: 31138645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained active site rigidity during synthesis by human DNA polymerase μ.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nat Struct Mol Biol; 2014 Mar; 21(3):253-60. PubMed ID: 24487959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural snapshots of human DNA polymerase μ engaged on a DNA double-strand break.
    Kaminski AM; Pryor JM; Ramsden DA; Kunkel TA; Pedersen LC; Bebenek K
    Nat Commun; 2020 Sep; 11(1):4784. PubMed ID: 32963245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creative template-dependent synthesis by human polymerase mu.
    Moon AF; Gosavi RA; Kunkel TA; Pedersen LC; Bebenek K
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4530-6. PubMed ID: 26240373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insight into the substrate specificity of DNA Polymerase mu.
    Moon AF; Garcia-Diaz M; Bebenek K; Davis BJ; Zhong X; Ramsden DA; Kunkel TA; Pedersen LC
    Nat Struct Mol Biol; 2007 Jan; 14(1):45-53. PubMed ID: 17159995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase mu: An inflexible scaffold for substrate flexibility.
    Kaminski AM; Bebenek K; Pedersen LC; Kunkel TA
    DNA Repair (Amst); 2020 Sep; 93():102932. PubMed ID: 33087269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and Structural Analyses of Human DNA Polymerase θ (POLQ).
    Malaby AW; Martin SK; Wood RD; Doublié S
    Methods Enzymol; 2017; 592():103-121. PubMed ID: 28668117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of DNA polymerase mu (pol mu) with Ku and ligase IV: role for pol mu in end-joining double-strand break repair.
    Mahajan KN; Nick McElhinny SA; Mitchell BS; Ramsden DA
    Mol Cell Biol; 2002 Jul; 22(14):5194-202. PubMed ID: 12077346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RETRACTED: Human DNA polymerase θ harbors DNA end-trimming activity critical for DNA repair.
    Zahn KE; Jensen RB; Wood RD; Doublié S
    Mol Cell; 2021 Apr; 81(7):1534-1547.e4. PubMed ID: 33577776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the DNA substrate influences pre-catalytic conformational changes of DNA polymerase β.
    Huang J; Alnajjar KS; Mahmoud MM; Eckenroth B; Doublié S; Sweasy JB
    J Biol Chem; 2018 Sep; 293(39):15084-15094. PubMed ID: 30068550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA.
    García-Escudero R; García-Díaz M; Salas ML; Blanco L; Salas J
    J Mol Biol; 2003 Mar; 326(5):1403-12. PubMed ID: 12595253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 20 years of DNA Polymerase μ, the polymerase that still surprises.
    Ghosh D; Raghavan SC
    FEBS J; 2021 Dec; 288(24):7230-7242. PubMed ID: 33786971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι.
    Choi JY; Patra A; Yeom M; Lee YS; Zhang Q; Egli M; Guengerich FP
    J Biol Chem; 2016 Sep; 291(40):21063-21073. PubMed ID: 27555320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis.
    Freudenthal BD; Beard WA; Wilson SH
    DNA Repair (Amst); 2015 Aug; 32():3-9. PubMed ID: 26002198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism.
    Gouge J; Rosario S; Romain F; Beguin P; Delarue M
    J Mol Biol; 2013 Nov; 425(22):4334-52. PubMed ID: 23856622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.