These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28811508)

  • 1. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques.
    Guo D; Juan J; Chang L; Zhang J; Huang D
    Sci Rep; 2017 Aug; 7(1):8303. PubMed ID: 28811508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits.
    Zhao J; Bodner G; Rewald B
    Front Plant Sci; 2016; 7():1864. PubMed ID: 27999587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for
    Xiong X; Zhang J; Guo D; Chang L; Huang D
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An explainable deep machine vision framework for plant stress phenotyping.
    Ghosal S; Blystone D; Singh AK; Ganapathysubramanian B; Singh A; Sarkar S
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4613-4618. PubMed ID: 29666265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-mining Techniques for Image-based Plant Phenotypic Traits Identification and Classification.
    Rahaman MM; Ahsan MA; Chen M
    Sci Rep; 2019 Dec; 9(1):19526. PubMed ID: 31862925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions.
    Gutiérrez S; Tardaguila J; Fernández-Novales J; Diago MP
    Sensors (Basel); 2016 Feb; 16(2):236. PubMed ID: 26891304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for High-Throughput Stress Phenotyping in Plants.
    Singh A; Ganapathysubramanian B; Singh AK; Sarkar S
    Trends Plant Sci; 2016 Feb; 21(2):110-124. PubMed ID: 26651918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning models in breast cancer survival prediction.
    Montazeri M; Montazeri M; Montazeri M; Beigzadeh A
    Technol Health Care; 2016; 24(1):31-42. PubMed ID: 26409558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
    Pound MP; Atkinson JA; Townsend AJ; Wilson MH; Griffiths M; Jackson AS; Bulat A; Tzimiropoulos G; Wells DM; Murchie EH; Pridmore TP; French AP
    Gigascience; 2017 Oct; 6(10):1-10. PubMed ID: 29020747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning and its applications in plant molecular studies.
    Sun S; Wang C; Ding H; Zou Q
    Brief Funct Genomics; 2020 Jan; 19(1):40-48. PubMed ID: 31867668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Phenotype-Based Approach for the Substrate Water Status Forecast of Greenhouse Netted Muskmelon.
    Chang L; Yin Y; Xiang J; Liu Q; Li D; Huang D
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia.
    Ansari M; Othman F; Abunama T; El-Shafie A
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):12139-12149. PubMed ID: 29455350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fetal health status prediction based on maternal clinical history using machine learning techniques.
    Akbulut A; Ertugrul E; Topcu V
    Comput Methods Programs Biomed; 2018 Sep; 163():87-100. PubMed ID: 30119860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developing robust arsenic awareness prediction models using machine learning algorithms.
    Singh SK; Taylor RW; Rahman MM; Pradhan B
    J Environ Manage; 2018 Apr; 211():125-137. PubMed ID: 29408061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive study of excess phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development.
    Shukla D; Rinehart CA; Sahi SV
    Sci Rep; 2017 Jun; 7(1):3074. PubMed ID: 28596610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project.
    Zeng Q; Liu Y; Zhao H; Sun M; Li X
    Environ Pollut; 2017 Apr; 223():676-684. PubMed ID: 28196722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives.
    Singh AK; Ganapathysubramanian B; Sarkar S; Singh A
    Trends Plant Sci; 2018 Oct; 23(10):883-898. PubMed ID: 30104148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.
    Wang Z; Hu M; Zhai G
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation.
    Kocak B; Yardimci AH; Bektas CT; Turkcanoglu MH; Erdim C; Yucetas U; Koca SB; Kilickesmez O
    Eur J Radiol; 2018 Oct; 107():149-157. PubMed ID: 30292260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.