BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 28811569)

  • 21. Three-dimensional genome architectural CCCTC-binding factor makes choice in duplicated enhancers at Pcdhα locus.
    Wu Y; Jia Z; Ge X; Wu Q
    Sci China Life Sci; 2020 Jun; 63(6):835-844. PubMed ID: 32249388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6.
    Xie Y; Chen C; Stevenson MA; Auron PE; Calderwood SK
    J Biol Chem; 2002 Apr; 277(14):11802-10. PubMed ID: 11801594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-molecule nascent RNA sequencing identifies regulatory domain architecture at promoters and enhancers.
    Tome JM; Tippens ND; Lis JT
    Nat Genet; 2018 Nov; 50(11):1533-1541. PubMed ID: 30349116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulatory effect of heat shock transcription factor-1 gene on heat shock proteins and its transcriptional regulation analysis in small abalone Haliotis diversicolor.
    Zhang X; Li Y; Sun Y; Guo M; Feng J; Wang Y; Zhang Z
    BMC Mol Cell Biol; 2020 Nov; 21(1):83. PubMed ID: 33228519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pervasive and CpG-dependent promoter-like characteristics of transcribed enhancers.
    Steinhaus R; Gonzalez T; Seelow D; Robinson PN
    Nucleic Acids Res; 2020 Jun; 48(10):5306-5317. PubMed ID: 32338759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription.
    Sistonen L; Sarge KD; Morimoto RI
    Mol Cell Biol; 1994 Mar; 14(3):2087-99. PubMed ID: 8114740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model of active transcription hubs that unifies the roles of active promoters and enhancers.
    Zhu I; Song W; Ovcharenko I; Landsman D
    Nucleic Acids Res; 2021 May; 49(8):4493-4505. PubMed ID: 33872375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AIRAP, a new human heat shock gene regulated by heat shock factor 1.
    Rossi A; Trotta E; Brandi R; Arisi I; Coccia M; Santoro MG
    J Biol Chem; 2010 Apr; 285(18):13607-15. PubMed ID: 20185824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters.
    Kim JA; Kim Y; Kwon BM; Han DC
    J Biol Chem; 2013 Oct; 288(40):28713-26. PubMed ID: 23983126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms driving transcriptional stress responses.
    Vihervaara A; Duarte FM; Lis JT
    Nat Rev Genet; 2018 Jun; 19(6):385-397. PubMed ID: 29556092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat Shock Protein Genes Undergo Dynamic Alteration in Their Three-Dimensional Structure and Genome Organization in Response to Thermal Stress.
    Chowdhary S; Kainth AS; Gross DS
    Mol Cell Biol; 2017 Dec; 37(24):. PubMed ID: 28970326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex.
    Takii R; Fujimoto M; Tan K; Takaki E; Hayashida N; Nakato R; Shirahige K; Nakai A
    Mol Cell Biol; 2015 Jan; 35(1):11-25. PubMed ID: 25312646
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A transcription cofactor required for the heat-shock response.
    Xu D; Zalmas LP; La Thangue NB
    EMBO Rep; 2008 Jul; 9(7):662-9. PubMed ID: 18451878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The proteostasis guardian HSF1 directs the transcription of its paralog and interactor HSF2 during proteasome dysfunction.
    Santopolo S; Riccio A; Rossi A; Santoro MG
    Cell Mol Life Sci; 2021 Feb; 78(3):1113-1129. PubMed ID: 32607595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determinants of promoter and enhancer transcription directionality in metazoans.
    Ibrahim MM; Karabacak A; Glahs A; Kolundzic E; Hirsekorn A; Carda A; Tursun B; Zinzen RP; Lacadie SA; Ohler U
    Nat Commun; 2018 Oct; 9(1):4472. PubMed ID: 30367057
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating Enhancer Function and Transcription.
    Field A; Adelman K
    Annu Rev Biochem; 2020 Jun; 89():213-234. PubMed ID: 32197056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The chromatin Remodeler CHD8 is required for activation of progesterone receptor-dependent enhancers.
    Ceballos-Chávez M; Subtil-Rodríguez A; Giannopoulou EG; Soronellas D; Vázquez-Chávez E; Vicent GP; Elemento O; Beato M; Reyes JC
    PLoS Genet; 2015 Apr; 11(4):e1005174. PubMed ID: 25894978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional cofactors display specificity for distinct types of core promoters.
    Haberle V; Arnold CD; Pagani M; Rath M; Schernhuber K; Stark A
    Nature; 2019 Jun; 570(7759):122-126. PubMed ID: 31092928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heat shock factor 1 counteracts epigenetic silencing of nuclear transgenes in Chlamydomonas reinhardtii.
    Strenkert D; Schmollinger S; Schroda M
    Nucleic Acids Res; 2013 May; 41(10):5273-89. PubMed ID: 23585280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.