These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28811577)

  • 1. Dirac point induced ultralow-threshold laser and giant optoelectronic quantum oscillations in graphene-based heterojunctions.
    Haider G; Ravindranath R; Chen TP; Roy P; Roy PK; Cai SY; Chang HT; Chen YF
    Nat Commun; 2017 Aug; 8(1):256. PubMed ID: 28811577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Quantum Oscillation of Dirac Fermions in a Single-Defect Resonant Transistor.
    Zheng S; Joo Y; Zhao M; Kang K; Watanabe K; Taniguchi T; Myoung N; Moon P; Son YW; Yang H
    ACS Nano; 2021 Dec; 15(12):20013-20019. PubMed ID: 34843211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes.
    Lee KW; Jang CW; Shin DH; Kim JM; Kang SS; Lee DH; Kim S; Choi SH; Hwang E
    Sci Rep; 2016 Jul; 6():30669. PubMed ID: 27465107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar Dirac electrons in magnetic quantum dots.
    Yang N; Zhu JL
    J Phys Condens Matter; 2012 May; 24(21):215303. PubMed ID: 22543306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Faraday and Kerr rotations in graphene.
    Shimano R; Yumoto G; Yoo JY; Matsunaga R; Tanabe S; Hibino H; Morimoto T; Aoki H
    Nat Commun; 2013; 4():1841. PubMed ID: 23673626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental observation of the quantum Hall effect and Berry's phase in graphene.
    Zhang Y; Tan YW; Stormer HL; Kim P
    Nature; 2005 Nov; 438(7065):201-4. PubMed ID: 16281031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Confinement of Dirac Quasiparticles in Graphene Patterned with Sub-Nanometer Precision.
    Cortés-Del Río E; Mallet P; González-Herrero H; Lado JL; Fernández-Rossier J; Gómez-Rodríguez JM; Veuillen JY; Brihuega I
    Adv Mater; 2020 Jul; 32(30):e2001119. PubMed ID: 32567110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers.
    Hu HW; Haider G; Liao YM; Roy PK; Ravindranath R; Chang HT; Lu CH; Tseng CY; Lin TY; Shih WH; Chen YF
    Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28991394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling single-mode behavior over large areas with photonic Dirac cones.
    Bravo-Abad J; Joannopoulos JD; Soljačić M
    Proc Natl Acad Sci U S A; 2012 Jun; 109(25):9761-5. PubMed ID: 22665784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward High-Peak-to-Valley-Ratio Graphene Resonant Tunneling Diodes.
    Zhang Z; Zhang B; Wang Y; Wang M; Zhang Y; Li H; Zhang J; Song A
    Nano Lett; 2023 Sep; 23(17):8132-8139. PubMed ID: 37668256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant orbital magnetic moments and paramagnetic shift in artificial relativistic atoms and molecules.
    Ge Z; Slizovskiy S; Polizogopoulos P; Joshi T; Taniguchi T; Watanabe K; Lederman D; Fal'ko VI; Velasco J
    Nat Nanotechnol; 2023 Mar; 18(3):250-256. PubMed ID: 36879123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant tunnelling and negative differential conductance in graphene transistors.
    Britnell L; Gorbachev RV; Geim AK; Ponomarenko LA; Mishchenko A; Greenaway MT; Fromhold TM; Novoselov KS; Eaves L
    Nat Commun; 2013; 4():1794. PubMed ID: 23653206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic confinement of massless Dirac fermions in graphene.
    De Martino A; Dell'Anna L; Egger R
    Phys Rev Lett; 2007 Feb; 98(6):066802. PubMed ID: 17358966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures.
    Wallbank JR; Ghazaryan D; Misra A; Cao Y; Tu JS; Piot BA; Potemski M; Pezzini S; Wiedmann S; Zeitler U; Lane TL; Morozov SV; Greenaway MT; Eaves L; Geim AK; Fal'ko VI; Novoselov KS; Mishchenko A
    Science; 2016 Aug; 353(6299):575-9. PubMed ID: 27493182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity Effect Induced Electronic Properties of Graphene on Bi₂Te₂Se.
    Lee P; Jin KH; Sung SJ; Kim JG; Ryu MT; Park HM; Jhi SH; Kim N; Kim Y; Yu SU; Kim KS; Noh do Y; Chung J
    ACS Nano; 2015 Nov; 9(11):10861-6. PubMed ID: 26549323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Valley filtering in graphene due to substrate-induced mass potential.
    da Costa DR; Chaves A; Farias GA; Peeters FM
    J Phys Condens Matter; 2017 Jun; 29(21):215502. PubMed ID: 28437252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene: status and prospects.
    Geim AK
    Science; 2009 Jun; 324(5934):1530-4. PubMed ID: 19541989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Wires and Waveguides Formed in Graphene by Strain.
    Wu Y; Zhai D; Pan C; Cheng B; Taniguchi T; Watanabe K; Sandler N; Bockrath M
    Nano Lett; 2018 Jan; 18(1):64-69. PubMed ID: 29207241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.