These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28811613)

  • 1. Transcriptomic analysis of nickel exposure in Sphingobium sp. ba1 cells using RNA-seq.
    Volpicella M; Leoni C; Manzari C; Chiara M; Picardi E; Piancone E; Italiano F; D'Erchia A; Trotta M; Horner DS; Pesole G; Ceci LR
    Sci Rep; 2017 Aug; 7(1):8262. PubMed ID: 28811613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Draft genome sequence of Sphingobium sp. strain ba1, resistant to kanamycin and nickel ions.
    Manzari C; Chiara M; Costanza A; Leoni C; Volpicella M; Picardi E; D'Erchia AM; Placido A; Trotta M; Horner DS; Pesole G; Ceci LR
    FEMS Microbiol Lett; 2014 Dec; 361(1):8-9. PubMed ID: 25288103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: Dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer.
    Zhao Q; Yue S; Bilal M; Hu H; Wang W; Zhang X
    Sci Total Environ; 2017 Dec; 609():1238-1247. PubMed ID: 28787798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Putative Genes Involved in Bisphenol A Degradation Using Differential Protein Abundance Analysis of Sphingobium sp. BiD32.
    Zhou NA; Kjeldal H; Gough HL; Nielsen JL
    Environ Sci Technol; 2015 Oct; 49(20):12232-41. PubMed ID: 26390302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil.
    Mahbub KR; Krishnan K; Megharaj M; Naidu R
    Chemosphere; 2016 Feb; 144():330-7. PubMed ID: 26378869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family.
    Gan HM; Gan HY; Ahmad NH; Aziz NA; Hudson AO; Savka MA
    Front Cell Infect Microbiol; 2014; 4():188. PubMed ID: 25621282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genome sequence of Sphingobium sp. strain PAMC 28499 reveals a potential for degrading pectin with comparative genomics approach.
    Han SR; Jang SM; Chi YM; Kim B; Jung SH; Lee YM; Uetake J; Lee JH; Park H; Oh TJ
    Genes Genomics; 2020 Sep; 42(9):1087-1096. PubMed ID: 32737807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron acquisition system of Sphingobium sp. strain SYK-6, a degrader of lignin-derived aromatic compounds.
    Fujita M; Sakumoto T; Tanatani K; Yu H; Mori K; Kamimura N; Masai E
    Sci Rep; 2020 Jul; 10(1):12177. PubMed ID: 32699224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite.
    Dadhwal M; Jit S; Kumari H; Lal R
    Int J Syst Evol Microbiol; 2009 Dec; 59(Pt 12):3140-4. PubMed ID: 19643888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingobium sp. HV3 degrades both herbicides and polyaromatic hydrocarbons using ortho- and meta-pathways with differential expression shown by RT-PCR.
    Sipilä TP; Väisänen P; Paulin L; Yrjälä K
    Biodegradation; 2010 Sep; 21(5):771-84. PubMed ID: 20182771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal interactions with the transmembrane region of HupE Ni
    Rowińska-Żyrek M
    J Inorg Biochem; 2018 Mar; 180():33-38. PubMed ID: 29227924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the mechanisms of desiccation resistance of the Patagonian PAH-degrading strain Sphingobium sp. 22B.
    Madueño L; Coppotelli BM; Festa S; Alvarez HM; Morelli IS
    J Appl Microbiol; 2018 Jun; 124(6):1532-1543. PubMed ID: 29473990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ni exposure impacts the pool of free Fe and modifies DNA supercoiling via metal-induced oxidative stress in Escherichia coli K-12.
    Gault M; Effantin G; Rodrigue A
    Free Radic Biol Med; 2016 Aug; 97():351-361. PubMed ID: 27375130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingobium vermicomposti sp. nov., isolated from vermicompost.
    Vaz-Moreira I; Faria C; Lopes AR; Svensson L; Falsen E; Moore ER; Ferreira AC; Nunes OC; Manaia CM
    Int J Syst Evol Microbiol; 2009 Dec; 59(Pt 12):3145-9. PubMed ID: 19643879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent responses of functional gene expression to various nutrient conditions during microcystin-LR biodegradation by Novosphingobium sp. THN1 strain.
    Li J; Peng L; Li J; Qiao Y
    Bioresour Technol; 2014 Mar; 156():335-41. PubMed ID: 24530889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil.
    Singh A; Lal R
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):162-6. PubMed ID: 19126742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome, Bioinformatic, and Functional Analyses Reveal a Distinct and Conserved Metabolic Pathway for Bile Salt Degradation in the
    Feller FM; Wöhlbrand L; Holert J; Schnaars V; Elsner L; Mohn WW; Rabus R; Philipp B
    Appl Environ Microbiol; 2021 Sep; 87(19):e0098721. PubMed ID: 34260303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of acetochlor by a bacterial consortium of Rhodococcus sp.T3-1, Delftia sp.T3-6 and Sphingobium sp.MEA3-1.
    Hou Y; Dong W; Wang F; Li J; Shen W; Li Y; Cui Z
    Lett Appl Microbiol; 2014 Jul; 59(1):35-42. PubMed ID: 24605783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inoculum pretreatment on survival, activity and catabolic gene expression of Sphingobium yanoikuyae B1 in an aged polycyclic aromatic hydrocarbon-contaminated soil.
    Cunliffe M; Kawasaki A; Fellows E; Kertesz MA
    FEMS Microbiol Ecol; 2006 Dec; 58(3):364-72. PubMed ID: 17117981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters.
    Rodionov DA; Hebbeln P; Gelfand MS; Eitinger T
    J Bacteriol; 2006 Jan; 188(1):317-27. PubMed ID: 16352848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.