These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28811833)

  • 41. Identification of protein biochemical functions by similarity search using the molecular surface database eF-site.
    Kinoshita K; Nakamura H
    Protein Sci; 2003 Aug; 12(8):1589-95. PubMed ID: 12876308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins.
    Konc J; Janežič D
    Prog Biophys Mol Biol; 2017 Sep; 128():24-32. PubMed ID: 28212856
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new method to detect related function among proteins independent of sequence and fold homology.
    Schmitt S; Kuhn D; Klebe G
    J Mol Biol; 2002 Oct; 323(2):387-406. PubMed ID: 12381328
    [TBL] [Abstract][Full Text] [Related]  

  • 44. TargetATPsite: a template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble.
    Yu DJ; Hu J; Huang Y; Shen HB; Qi Y; Tang ZM; Yang JY
    J Comput Chem; 2013 Apr; 34(11):974-85. PubMed ID: 23288787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.
    Meslamani J; Rognan D; Kellenberger E
    Bioinformatics; 2011 May; 27(9):1324-6. PubMed ID: 21398668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. FINDSITE: a combined evolution/structure-based approach to protein function prediction.
    Skolnick J; Brylinski M
    Brief Bioinform; 2009 Jul; 10(4):378-91. PubMed ID: 19324930
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Docking without docking: ISEARCH--prediction of interactions using known interfaces.
    Günther S; May P; Hoppe A; Frömmel C; Preissner R
    Proteins; 2007 Dec; 69(4):839-44. PubMed ID: 17803236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PocketDepth: a new depth based algorithm for identification of ligand binding sites in proteins.
    Kalidas Y; Chandra N
    J Struct Biol; 2008 Jan; 161(1):31-42. PubMed ID: 17949996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein-protein binding sites prediction by 3D structural similarities.
    Guo F; Li SC; Wang L
    J Chem Inf Model; 2011 Dec; 51(12):3287-94. PubMed ID: 22077765
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ATPbind: Accurate Protein-ATP Binding Site Prediction by Combining Sequence-Profiling and Structure-Based Comparisons.
    Hu J; Li Y; Zhang Y; Yu DJ
    J Chem Inf Model; 2018 Feb; 58(2):501-510. PubMed ID: 29361215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of sub-cavity binding preferences using an adaptive physicochemical structure representation.
    Wallach I; Lilien RH
    Bioinformatics; 2009 Jun; 25(12):i296-304. PubMed ID: 19478002
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites.
    Weill N; Rognan D
    J Chem Inf Model; 2010 Jan; 50(1):123-35. PubMed ID: 20058856
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2016 Nov; 70():253-274. PubMed ID: 27771574
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of the ligand binding sites on the molecular surface of proteins.
    Kinoshita K; Nakamura H
    Protein Sci; 2005 Mar; 14(3):711-8. PubMed ID: 15689509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Integrated Approach to Sequence-Independent Local Alignment of Protein Binding Sites.
    Pang B; Schlessman D; Kuang X; Zhao N; Shyu D; Korkin D; Shyu CR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):298-308. PubMed ID: 26357218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting the accuracy of ligand overlay methods with Random Forest models.
    Nandigam RK; Evans DA; Erickson JA; Kim S; Sutherland JJ
    J Chem Inf Model; 2008 Dec; 48(12):2386-94. PubMed ID: 19053524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A hybrid clustering of protein binding sites.
    Iván G; Szabadka Z; Grolmusz V
    FEBS J; 2010 Mar; 277(6):1494-502. PubMed ID: 20148971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ligand binding site superposition and comparison based on Atomic Property Fields: identification of distant homologues, convergent evolution and PDB-wide clustering of binding sites.
    Totrov M
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S35. PubMed ID: 21342566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.