BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28812141)

  • 1. Next generation of ventricular catheters for hydrocephalus based on parametric designs.
    Galarza M; Giménez A; Amigó JM; Schuhmann M; Gazzeri R; Thomale U; McAllister JP
    Childs Nerv Syst; 2018 Feb; 34(2):267-276. PubMed ID: 28812141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parametric study of ventricular catheters for hydrocephalus.
    Galarza M; Giménez A; Pellicer O; Valero J; Amigó JM
    Acta Neurochir (Wien); 2016 Jan; 158(1):109-15; discussion 115-6. PubMed ID: 26530709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow ventricular catheters for shunted hydrocephalus: initial clinical results.
    Galarza M; Etus V; Sosa F; Argañaraz R; Mantese B; Gazzeri R; Montoya CG; de la Rosa P; Guerrero AL; Chaban G; Giménez Á; Amigó JM
    Childs Nerv Syst; 2021 Mar; 37(3):903-911. PubMed ID: 33123821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics of ventricular catheters used for the treatment of hydrocephalus: a 3D analysis.
    Galarza M; Giménez Á; Valero J; Pellicer OP; Amigó JM
    Childs Nerv Syst; 2014 Jan; 30(1):105-16. PubMed ID: 23881424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New designs of ventricular catheters for hydrocephalus by 3-D computational fluid dynamics.
    Galarza M; Giménez Á; Pellicer O; Valero J; Amigó JM
    Childs Nerv Syst; 2015 Jan; 31(1):37-48. PubMed ID: 25096070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational and experimental study of proximal flow in ventricular catheters. Technical note.
    Lin J; Morris M; Olivero W; Boop F; Sanford RA
    J Neurosurg; 2003 Aug; 99(2):426-31. PubMed ID: 12924722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basic cerebrospinal fluid flow patterns in ventricular catheters prototypes.
    Galarza M; Giménez Á; Valero J; Pellicer O; Martínez-Lage JF; Amigó JM
    Childs Nerv Syst; 2015 Jun; 31(6):873-84. PubMed ID: 25686900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun polyurethane as an alternative ventricular catheter and in vitro model of shunt obstruction.
    Suresh S; Black RA
    J Biomater Appl; 2015 Feb; 29(7):1028-38. PubMed ID: 25245779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the hole geometry on the flow distribution in ventricular catheters for hydrocephalus.
    Giménez Á; Galarza M; Pellicer O; Valero J; Amigó JM
    Biomed Eng Online; 2016 Jul; 15 Suppl 1(Suppl 1):71. PubMed ID: 27455059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsatile flow in ventricular catheters for hydrocephalus.
    Giménez Á; Galarza M; Thomale U; Schuhmann MU; Valero J; Amigó JM
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational fluid dynamics simulation framework for ventricular catheter design optimization.
    Weisenberg SH; TerMaath SC; Barbier CN; Hill JC; Killeffer JA
    J Neurosurg; 2018 Oct; 129(4):1067-1077. PubMed ID: 29125413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in ventricular size and effect of ventricular catheter placement in pediatric patients with shunted hydrocephalus.
    Tuli S; O'Hayon B; Drake J; Clarke M; Kestle J
    Neurosurgery; 1999 Dec; 45(6):1329-33; discussion 1333-5. PubMed ID: 10598700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resistance proximal "scaled" ventricular catheters.
    Qi D; Olson E; Ivankovic S; Sommer T; Nair K; Morris M; Lin J
    Childs Nerv Syst; 2022 Feb; 38(2):333-341. PubMed ID: 34654964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the perforated segment of the ventricular catheter in cerebrospinal fluid leakage into the brain.
    Prasad A; Madan VS; Buxi TB; Renjen PN; Vohra R
    Br J Neurosurg; 1991; 5(3):299-302. PubMed ID: 1892573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel, benchtop model for quantitative analysis of resistance in ventricular catheters.
    Gopalakrishnan P; Faryami A; Harris CA
    PLoS One; 2023; 18(11):e0294811. PubMed ID: 38032895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiology of shunt dysfunction in shunt treated hydrocephalus.
    Blegvad C; Skjolding AD; Broholm H; Laursen H; Juhler M
    Acta Neurochir (Wien); 2013 Sep; 155(9):1763-72. PubMed ID: 23645322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided Application of Ventricular Catheters (GAVCA)--multicentre study to compare the ventricular catheter position after use of a catheter guide versus freehand application: study protocol for a randomised trail.
    Schaumann A; Thomale UW
    Trials; 2013 Dec; 14():428. PubMed ID: 24330776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventricular catheter entry site and not catheter tip location predicts shunt survival: a secondary analysis of 3 large pediatric hydrocephalus studies.
    Whitehead WE; Riva-Cambrin J; Kulkarni AV; Wellons JC; Rozzelle CJ; Tamber MS; Limbrick DD; Browd SR; Naftel RP; Shannon CN; Simon TD; Holubkov R; Illner A; Cochrane DD; Drake JM; Luerssen TG; Oakes WJ; Kestle JR;
    J Neurosurg Pediatr; 2017 Feb; 19(2):157-167. PubMed ID: 27813457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shunt revision by coagulation with retention of the ventricular catheter.
    Hudgins RJ; Boydston WR
    Pediatr Neurosurg; 1998 Aug; 29(2):57-9. PubMed ID: 9792956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis.
    Konstantelias AA; Vardakas KZ; Polyzos KA; Tansarli GS; Falagas ME
    J Neurosurg; 2015 May; 122(5):1096-112. PubMed ID: 25768831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.