These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28812281)

  • 1. Preclinical development of an automated injection device for intradermal delivery of a cell-based therapy.
    Leoni G; Lyness A; Ginty P; Schutte R; Pillai G; Sharma G; Kemp P; Mount N; Sharpe M
    Drug Deliv Transl Res; 2017 Oct; 7(5):695-708. PubMed ID: 28812281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usability evaluation of intradermal adapters (IDA).
    Tsals I
    Vaccine; 2017 Mar; 35(14):1797-1801. PubMed ID: 27496277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intradermal needle-free powdered drug injection by a helium-powered device.
    Liu J; Hogan NC; Hunter IW
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2068-71. PubMed ID: 23366327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: are all delivery methods the same?
    Levin Y; Kochba E; Kenney R
    Vaccine; 2014 Jul; 32(34):4249-52. PubMed ID: 24930715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of needle-assisted jet injections.
    Li X; Ruddy B; Taberner A
    J Control Release; 2016 Dec; 243():195-203. PubMed ID: 27746273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jet injection devices for the needle-free administration of compounds, vaccines, and other agents.
    Logomasini MA; Stout RR; Marcinkoski R
    Int J Pharm Compd; 2013; 17(4):270-80. PubMed ID: 24261141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of jet speed on large volume jet injection.
    McKeage JW; Ruddy BP; Nielsen PMF; Taberner AJ
    J Control Release; 2018 Jun; 280():51-57. PubMed ID: 29723614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model.
    Beaujean M; Uijen RF; Langereis JD; Boccara D; Dam D; Soria A; Veldhuis G; Adam L; Bonduelle O; van der Wel NN; Luirink J; Pedruzzi E; Wissink J; de Jonge MI; Combadière B
    Vaccine; 2023 Mar; 41(13):2270-2279. PubMed ID: 36870875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Devices for intradermal vaccination.
    Kis EE; Winter G; Myschik J
    Vaccine; 2012 Jan; 30(3):523-38. PubMed ID: 22100637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults.
    Van Damme P; Oosterhuis-Kafeja F; Van der Wielen M; Almagor Y; Sharon O; Levin Y
    Vaccine; 2009 Jan; 27(3):454-9. PubMed ID: 19022318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic behavior of a spring-powered micronozzle needle-free injector.
    Schoubben A; Cavicchi A; Barberini L; Faraon A; Berti M; Ricci M; Blasi P; Postrioti L
    Int J Pharm; 2015 Aug; 491(1-2):91-8. PubMed ID: 26027490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise measurement of intradermal fluid delivery using a low activity technetium-99m pertechnetate tracer.
    Ranamukhaarachchi SA; Esposito TV; Raeiszadeh M; Häfeli UO; Stoeber B
    Vaccine; 2019 Dec; 37(51):7463-7469. PubMed ID: 31587894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability and accuracy of intradermal injection by Mantoux technique, hypodermic needle adapter, and hollow microneedle in pigs.
    Norman JJ; Gupta J; Patel SR; Park S; Jarrahian C; Zehrung D; Prausnitz MR
    Drug Deliv Transl Res; 2014 Apr; 4(2):126-30. PubMed ID: 25786726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intradermal vaccination for infants and children.
    Saitoh A; Aizawa Y
    Hum Vaccin Immunother; 2016 Sep; 12(9):2447-55. PubMed ID: 27135736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimally invasive and targeted therapeutic cell delivery to the skin using microneedle devices.
    Gualeni B; Coulman SA; Shah D; Eng PF; Ashraf H; Vescovo P; Blayney GJ; Piveteau LD; Guy OJ; Birchall JC
    Br J Dermatol; 2018 Mar; 178(3):731-739. PubMed ID: 28865105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hypodermic needle dimensions on subcutaneous injection delivery--a pig study of injection deposition evaluated by CT scanning, histology, and backflow.
    Juul KA; Bengtsson H; Eyving B; Kildegaard J; Lav S; Poulsen M; Serup J; Stallknecht B
    Skin Res Technol; 2012 Nov; 18(4):447-55. PubMed ID: 22233448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines.
    Alarcon JB; Hartley AW; Harvey NG; Mikszta JA
    Clin Vaccine Immunol; 2007 Apr; 14(4):375-81. PubMed ID: 17329444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intradermal vaccination using the novel microneedle device MicronJet600: Past, present, and future.
    Levin Y; Kochba E; Hung I; Kenney R
    Hum Vaccin Immunother; 2015; 11(4):991-7. PubMed ID: 25745830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Forces in Intradermal Injection Devices: Hydrodynamic Versus Human Factors.
    Verwulgen S; Beyers K; Van Mulder T; Peeters T; Truijen S; Dams F; Vankerckhoven V
    Pharm Res; 2018 Apr; 35(6):120. PubMed ID: 29671074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical performance and safety of adapters for intradermal delivery with conventional and autodisable syringes.
    Tsals I; Jarrahian C; Snyder FE; Saganic L; Saxon E; Zehrung D; Zimmerman G; Papania M; Klaff L
    Vaccine; 2015 Sep; 33(37):4705-11. PubMed ID: 25964169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.