These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 28812356)
1. Single Molecule Nanopore Spectrometry for Peptide Detection. Chavis AE; Brady KT; Hatmaker GA; Angevine CE; Kothalawala N; Dass A; Robertson JWF; Reiner JE ACS Sens; 2017 Sep; 2(9):1319-1328. PubMed ID: 28812356 [TBL] [Abstract][Full Text] [Related]
2. Voltage and blockade state optimization of cluster-enhanced nanopore spectrometry. Chavis AE; Brady KT; Kothalawala N; Reiner JE Analyst; 2015 Nov; 140(22):7718-25. PubMed ID: 26455860 [TBL] [Abstract][Full Text] [Related]
3. Enhanced single molecule mass spectrometry via charged metallic clusters. Angevine CE; Chavis AE; Kothalawala N; Dass A; Reiner JE Anal Chem; 2014 Nov; 86(22):11077-85. PubMed ID: 25343748 [TBL] [Abstract][Full Text] [Related]
4. Pore-forming toxins as tools for polymer analytics: From sizing to sequencing. Piguet F; Ensslen T; Bakshloo MA; Talarimoghari M; Ouldali H; Baaken G; Zaitseva E; Pastoriza-Gallego M; Behrends JC; Oukhaled A Methods Enzymol; 2021; 649():587-634. PubMed ID: 33712201 [TBL] [Abstract][Full Text] [Related]
5. Selective Detection and Characterization of Small Cysteine-Containing Peptides with Cluster-Modified Nanopore Sensing. Ghimire ML; Cox BD; Winn CA; Rockett TW; Schifano NP; Slagle HM; Gonzalez F; Bertino MF; Caputo GA; Reiner JE ACS Nano; 2022 Oct; 16(10):17229-17241. PubMed ID: 36214366 [TBL] [Abstract][Full Text] [Related]
6. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. Cao C; Long YT Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650 [TBL] [Abstract][Full Text] [Related]
7. Ligand-Induced Structural Changes of Thiolate-Capped Gold Nanoclusters Observed with Resistive-Pulse Nanopore Sensing. Cox BD; Woodworth PH; Wilkerson PD; Bertino MF; Reiner JE J Am Chem Soc; 2019 Mar; 141(9):3792-3796. PubMed ID: 30773002 [TBL] [Abstract][Full Text] [Related]
8. Laser-based temperature control to study the roles of entropy and enthalpy in polymer-nanopore interactions. Angevine CE; Robertson JWF; Dass A; Reiner JE Sci Adv; 2021 Apr; 7(17):. PubMed ID: 33883140 [TBL] [Abstract][Full Text] [Related]
9. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305 [TBL] [Abstract][Full Text] [Related]
10. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Reiner JE; Kasianowicz JJ; Nablo BJ; Robertson JW Proc Natl Acad Sci U S A; 2010 Jul; 107(27):12080-5. PubMed ID: 20566890 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the sensing performance of nanopore blockade sensors: A case study of prostate-specific antigen assay. Wu Y; Chuah K; Gooding JJ Biosens Bioelectron; 2020 Oct; 165():112434. PubMed ID: 32729547 [TBL] [Abstract][Full Text] [Related]
12. Detection of Amyloid-β Fibrils Using Track-Etched Nanopores: Effect of Geometry and Crowding. Meyer N; Arroyo N; Janot JM; Lepoitevin M; Stevenson A; Nemeir IA; Perrier V; Bougard D; Belondrade M; Cot D; Bentin J; Picaud F; Torrent J; Balme S ACS Sens; 2021 Oct; 6(10):3733-3743. PubMed ID: 34554735 [TBL] [Abstract][Full Text] [Related]
13. Next-Generation Nanopore Sensors Based on Conductive Pulse Sensing for Enhanced Detection of Nanoparticles. Confederat S; Lee S; Vang D; Soulias D; Marcuccio F; Peace TI; Edwards MA; Strobbia P; Samanta D; Wälti C; Actis P Small; 2024 Jan; 20(4):e2305186. PubMed ID: 37649152 [TBL] [Abstract][Full Text] [Related]
14. β-Barrel Nanopores with an Acidic-Aromatic Sensing Region Identify Proteinogenic Peptides at Low pH. Versloot RCA; Straathof SAP; Stouwie G; Tadema MJ; Maglia G ACS Nano; 2022 May; 16(5):7258-7268. PubMed ID: 35302739 [TBL] [Abstract][Full Text] [Related]
15. High Temperature Extends the Range of Size Discrimination of Nonionic Polymers by a Biological Nanopore. Piguet F; Ouldali H; Discala F; Breton MF; Behrends JC; Pelta J; Oukhaled A Sci Rep; 2016 Dec; 6():38675. PubMed ID: 27924860 [TBL] [Abstract][Full Text] [Related]
16. Improved Measurement of Proteins Using a Solid-State Nanopore Coupled with a Hydrogel. Acharya S; Jiang A; Kuo C; Nazarian R; Li K; Ma A; Siegal B; Toh C; Schmidt JJ ACS Sens; 2020 Feb; 5(2):370-376. PubMed ID: 31965788 [TBL] [Abstract][Full Text] [Related]
17. Protein Nanopore-Based Discrimination between Selected Neutral Amino Acids from Polypeptides. Asandei A; Rossini AE; Chinappi M; Park Y; Luchian T Langmuir; 2017 Dec; 33(50):14451-14459. PubMed ID: 29178796 [TBL] [Abstract][Full Text] [Related]
18. Single-Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. Hu F; Angelov B; Li S; Li N; Lin X; Zou A Chembiochem; 2020 Sep; 21(17):2467-2473. PubMed ID: 32274877 [TBL] [Abstract][Full Text] [Related]
19. The Utility of Nanopore Technology for Protein and Peptide Sensing. Robertson JWF; Reiner JE Proteomics; 2018 Sep; 18(18):e1800026. PubMed ID: 29952121 [TBL] [Abstract][Full Text] [Related]
20. The Manipulation of the Internal Hydrophobicity of FraC Nanopores Augments Peptide Capture and Recognition. Lucas FLR; Sarthak K; Lenting EM; Coltan D; van der Heide NJ; Versloot RCA; Aksimentiev A; Maglia G ACS Nano; 2021 Jun; 15(6):9600-9613. PubMed ID: 34060809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]