BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 28812366)

  • 1. A combination of experimental measurement, constitutive damage model, and diffusion tensor imaging to characterize the mechanical properties of the human brain.
    Karimi A; Rahmati SM; Razaghi R
    Comput Methods Biomech Biomed Engin; 2017 Sep; 20(12):1350-1363. PubMed ID: 28812366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Experimental Study to Measure the Mechanical Properties of the Human Liver.
    Karimi A; Shojaei A
    Dig Dis; 2018; 36(2):150-155. PubMed ID: 29131053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Combination of Constitutive Damage Model and Artificial Neural Networks to Characterize the Mechanical Properties of the Healthy and Atherosclerotic Human Coronary Arteries.
    Karimi A; Rahmati SM; Sera T; Kudo S; Navidbakhsh M
    Artif Organs; 2017 Sep; 41(9):E103-E117. PubMed ID: 28150399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of the mechanical properties of the human gallbladder.
    Karimi A; Shojaei A; Tehrani P
    J Med Eng Technol; 2017 Oct; 41(7):541-545. PubMed ID: 28849953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical measurement of the human cerebellum under compressive loading.
    Karimi A; Rahmati SM; Razaghi R; Hasani M
    J Med Eng Technol; 2019 Jan; 43(1):55-58. PubMed ID: 31068041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of smoking on the mechanical properties of the human lung.
    Karimi A; Razaghi R
    Technol Health Care; 2018; 26(6):963-972. PubMed ID: 30103357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of the human spinal cord under the compressive loading.
    Karimi A; Shojaei A; Tehrani P
    J Chem Neuroanat; 2017 Dec; 86():15-18. PubMed ID: 28720407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.
    Colgan NC; Gilchrist MD; Curran KM
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):304-9. PubMed ID: 20869383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the axial and circumferential mechanical properties of the skin tissue using experimental testing and constitutive modeling.
    Karimi A; Navidbakhsh M; Haghighatnama M; Haghi AM
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1768-74. PubMed ID: 25266627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Damage mechanisms in uniaxial compression of single enamel rods.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2015 Feb; 42():1-9. PubMed ID: 25460920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the axial and circumferential mechanical properties of rat skin tissue at different anatomical locations.
    Karimi A; Haghighatnama M; Navidbakhsh M; Haghi AM
    Biomed Tech (Berl); 2015 Apr; 60(2):115-22. PubMed ID: 25389978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive properties and constitutive modeling of different regions of 8-week-old pediatric porcine brain under large strain and wide strain rates.
    Li Z; Yang H; Wang G; Han X; Zhang S
    J Mech Behav Biomed Mater; 2019 Jan; 89():122-131. PubMed ID: 30268868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On modelling nonlinear viscoelastic effects in ligaments.
    Peña E; Peña JA; Doblaré M
    J Biomech; 2008 Aug; 41(12):2659-66. PubMed ID: 18672245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transversely isotropic viscohyperelastic-damage model for the brain tissue with strain rate sensitivity.
    He G; Fan L
    J Biomech; 2023 Apr; 151():111554. PubMed ID: 36958091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tension Strain-Softening and Compression Strain-Stiffening Behavior of Brain White Matter.
    Eskandari F; Shafieian M; Aghdam MM; Laksari K
    Ann Biomed Eng; 2021 Jan; 49(1):276-286. PubMed ID: 32494967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons.
    Natali AN; Pavan PG; Carniel EL; Lucisano ME; Taglialavoro G
    Med Eng Phys; 2005 Apr; 27(3):209-14. PubMed ID: 15694603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.