These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28812873)

  • 1. Ultrathin Manganese-Based Metal-Organic Framework Nanosheets: Low-Cost and Energy-Dense Lithium Storage Anodes with the Coexistence of Metal and Ligand Redox Activities.
    Li C; Hu X; Tong W; Yan W; Lou X; Shen M; Hu B
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29829-29838. PubMed ID: 28812873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin Cobalt-Based Metal-Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage.
    Ning Y; Lou X; Li C; Hu X; Hu B
    Chemistry; 2017 Nov; 23(63):15984-15990. PubMed ID: 28940576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Temperature Assembly of Ultrathin Amorphous MnO
    Zeng C; Weng W; Lv T; Xiao W
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30470-30478. PubMed ID: 30160098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A General Approach to Direct Growth of Oriented Metal-Organic Framework Nanosheets on Reduced Graphene Oxides.
    Liu C; Huang X; Liu J; Wang J; Chen Z; Luo R; Wang C; Li J; Wang L; Wan J; Yu C
    Adv Sci (Weinh); 2020 Feb; 7(4):1901480. PubMed ID: 32099752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin Zn2(OH)3VO3 Nanosheets: First Synthesis, Excellent Lithium-Storage Properties, and Investigation of Electrochemical Mechanism.
    Yang G; Wu M; Wang C
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23746-54. PubMed ID: 27560959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ti
    Xu J; Wang Q; Li B; Yao W; He M
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorine Doping Strengthens the Lithium-Storage Properties of the Mn-Based Metal-Organic Framework.
    He S; Zhou X; Li Z; Wang J; Ma L; Yang S
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26907-26914. PubMed ID: 28745481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance.
    Maiti S; Pramanik A; Manju U; Mahanty S
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16357-63. PubMed ID: 26158782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid Cellular Nanosheets for High-Performance Lithium-Ion Battery Anodes.
    Yu SH; Lee DJ; Park M; Kwon SG; Lee HS; Jin A; Lee KS; Lee JE; Oh MH; Kang K; Sung YE; Hyeon T
    J Am Chem Soc; 2015 Sep; 137(37):11954-61. PubMed ID: 26329036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets with the Inherent Open Active Sites as Electrocatalysts in Aprotic Li-O
    Yuan M; Wang R; Fu W; Lin L; Sun Z; Long X; Zhang S; Nan C; Sun G; Li H; Ma S
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11403-11413. PubMed ID: 30816695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-up Approach Design, Band Structure, and Lithium Storage Properties of Atomically Thin γ-FeOOH Nanosheets.
    Song Y; Cao Y; Wang J; Zhou YN; Fang F; Li Y; Gao SP; Gu QF; Hu L; Sun D
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21334-42. PubMed ID: 27471909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Lin CC; Hsu CT; Liu W; Huang SC; Lin MH; Kortz U; Mougharbel AS; Chen TY; Hu CW; Lee JF; Wang CC; Liao YF; Li LJ; Li L; Peng S; Stimming U; Chen HY
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40296-40309. PubMed ID: 32841558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal-Organic Material.
    Li G; Yang H; Li F; Cheng F; Shi W; Chen J; Cheng P
    Inorg Chem; 2016 May; 55(10):4935-40. PubMed ID: 27120483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
    Zheng F; Xia G; Yang Y; Chen Q
    Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanosheets of earth-abundant jarosite as novel anodes for high-rate and long-life lithium-ion batteries.
    Ding YL; Wen Y; Chen CC; van Aken PA; Maier J; Yu Y
    ACS Appl Mater Interfaces; 2015 May; 7(19):10518-24. PubMed ID: 25915822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Al-based metal organic framework derived self-assembled carbon nanosheets as innovative anodes for Li- and Na-ion batteries.
    Zeng XR; Jin WW; Li HJ; Inguva S; Zhang Q; Zeng SZ; Xu GZ; Zou JZ
    Nanotechnology; 2020 Apr; 31(15):155602. PubMed ID: 31860881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.