BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2881299)

  • 1. The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection.
    Rudolph H; Hinnen A
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1340-4. PubMed ID: 2881299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PHO5 upstream sequences confer phosphate control on the constitutive PHO3 gene.
    Bajwa W; Rudolph H; Hinnen A
    Yeast; 1987 Mar; 3(1):33-42. PubMed ID: 2849256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence.
    Struhl K
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7865-9. PubMed ID: 6096864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Each of three "TATA elements" specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae.
    Hahn S; Hoar ET; Guarente L
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8562-6. PubMed ID: 3001709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae PHO5 promoter region: location and function of the upstream activation site.
    Nakao J; Miyanohara A; Toh-e A; Matsubara K
    Mol Cell Biol; 1986 Jul; 6(7):2613-23. PubMed ID: 3023941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements.
    Almer A; Rudolph H; Hinnen A; Hörz W
    EMBO J; 1986 Oct; 5(10):2689-96. PubMed ID: 3536481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the transcriptionally repressed phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; Stranathan MC; Preis LH
    Mol Cell Biol; 1986 Jan; 6(1):38-46. PubMed ID: 3537687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of sequences required for RNA initiation from the PGK promoter of Saccharomyces cerevisiae.
    Rathjen J; Mellor J
    Nucleic Acids Res; 1990 Jun; 18(11):3219-25. PubMed ID: 2192358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocal regulation of the tandemly duplicated PHO5/PHO3 gene cluster within the acid phosphatase multigene family of Saccharomyces cerevisiae.
    Tait-Kamradt AG; Turner KJ; Kramer RA; Elliott QD; Bostian SJ; Thill GP; Rogers DT; Bostian KA
    Mol Cell Biol; 1986 Jun; 6(6):1855-65. PubMed ID: 3537710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequences required for transcriptional initiation of the Saccharomyces cerevisiae CYC7 genes.
    Healy AM; Helser TL; Zitomer RS
    Mol Cell Biol; 1987 Oct; 7(10):3785-91. PubMed ID: 3316987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae.
    Watanabe K; Yabe M; Kasahara K; Kokubo T
    PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae.
    Han M; Kim UJ; Kayne P; Grunstein M
    EMBO J; 1988 Jul; 7(7):2221-8. PubMed ID: 3046934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast mRNA initiation sites are determined primarily by specific sequences, not by the distance from the TATA element.
    Chen W; Struhl K
    EMBO J; 1985 Dec; 4(12):3273-80. PubMed ID: 3912167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 28-bp segment of the Saccharomyces cerevisiae PHO5 upstream activator sequence confers phosphate control to the CYC1-lacZ gene fusion.
    Sengstag C; Hinnen A
    Gene; 1988 Jul; 67(2):223-8. PubMed ID: 3139496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A heat shock element in the phosphoglycerate kinase gene promoter of yeast.
    Piper PW; Curran B; Davies MW; Hirst K; Lockheart A; Ogden JE; Stanway CA; Kingsman AJ; Kingsman SM
    Nucleic Acids Res; 1988 Feb; 16(4):1333-48. PubMed ID: 3279391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast.
    Struhl K
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8419-23. PubMed ID: 3909145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication.
    Schmid A; Fascher KD; Hörz W
    Cell; 1992 Nov; 71(5):853-64. PubMed ID: 1423633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TATA-dependent and TATA-independent transcription at the HIS4 gene of yeast.
    Pellman D; McLaughlin ME; Fink GR
    Nature; 1990 Nov; 348(6296):82-5. PubMed ID: 2234066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional requirements for the chromatin transition at the PHO5 promoter in Saccharomyces cerevisiae upon PHO5 activation.
    Fascher KD; Schmitz J; Hörz W
    J Mol Biol; 1993 Jun; 231(3):658-67. PubMed ID: 8515443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.