These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28813055)

  • 1. Multivesicular droplets: a cell model system to study compartmentalised biochemical reactions.
    Nuti N; Verboket PE; Dittrich PS
    Lab Chip; 2017 Sep; 17(18):3112-3119. PubMed ID: 28813055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed Signaling Cascades in Monodisperse Artificial Eukaryotic Cells.
    Shetty SC; Yandrapalli N; Pinkwart K; Krafft D; Vidakovic-Koch T; Ivanov I; Robinson T
    ACS Nano; 2021 Oct; 15(10):15656-15666. PubMed ID: 34570489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel method for obtaining homogeneous giant vesicles from a monodisperse water-in-oil emulsion prepared with a microfluidic device.
    Sugiura S; Kuroiwa T; Kagota T; Nakajima M; Sato S; Mukataka S; Walde P; Ichikawa S
    Langmuir; 2008 May; 24(9):4581-8. PubMed ID: 18376890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated formation of multicomponent-encapuslating vesosomes using continuous flow microcentrifugation.
    Jang H; Hu PC; Jung S; Kim WY; Kim SM; Malmstadt N; Jeon TJ
    Biotechnol J; 2013 Nov; 8(11):1341-6. PubMed ID: 23894035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models.
    Tivony R; Fletcher M; Al Nahas K; Keyser UF
    ACS Synth Biol; 2021 Nov; 10(11):3105-3116. PubMed ID: 34761904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology.
    Matosevic S
    Bioessays; 2012 Nov; 34(11):992-1001. PubMed ID: 22926929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Formation of Monodisperse Coacervate Organelles in Liposomes.
    Deng NN; Huck WTS
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9736-9740. PubMed ID: 28658517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functionalized Vesicles by Microfluidic Device.
    Vallejo D; Lee SH; Lee A
    Methods Mol Biol; 2017; 1572():489-510. PubMed ID: 28299707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Assembly of Monodisperse Vesosomes as Artificial Cell Models.
    Deng NN; Yelleswarapu M; Zheng L; Huck WT
    J Am Chem Soc; 2017 Jan; 139(2):587-590. PubMed ID: 27978623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review.
    Robinson T
    Adv Biosyst; 2019 Jun; 3(6):e1800318. PubMed ID: 32648705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing vesicle-based artificial cells with embedded living cells as organelle-like modules.
    Elani Y; Trantidou T; Wylie D; Dekker L; Polizzi K; Law RV; Ces O
    Sci Rep; 2018 Mar; 8(1):4564. PubMed ID: 29540757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal control of coacervate formation within liposomes.
    Deshpande S; Brandenburg F; Lau A; Last MGF; Spoelstra WK; Reese L; Wunnava S; Dogterom M; Dekker C
    Nat Commun; 2019 Apr; 10(1):1800. PubMed ID: 30996302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous microfluidic fabrication of synthetic asymmetric vesicles.
    Lu L; Schertzer JW; Chiarot PR
    Lab Chip; 2015 Sep; 15(17):3591-9. PubMed ID: 26220822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances of droplet-based microfluidics for engineering artificial cells.
    Fasciano S; Wang S
    SLAS Technol; 2024 Apr; 29(2):100090. PubMed ID: 37245659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water.
    van Swaay D; Tang TY; Mann S; de Mello A
    Angew Chem Int Ed Engl; 2015 Jul; 54(29):8398-401. PubMed ID: 26012895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic platform enables tailored translocation and reaction cascades in nanoliter droplet networks.
    Bachler S; Haidas D; Ort M; Duncombe TA; Dittrich PS
    Commun Biol; 2020 Dec; 3(1):769. PubMed ID: 33318607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Polymersome Protocells Dock with Virus Particle Mimics via Multivalent Glycan-Lectin Interactions.
    Kubilis A; Abdulkarim A; Eissa AM; Cameron NR
    Sci Rep; 2016 Aug; 6():32414. PubMed ID: 27576579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying Conditions for Protein Synthesis Inside Giant Vesicles Using Microfluidics toward Standardized Artificial Cell Production.
    Ushiyama R; Nanjo S; Tsugane M; Sato R; Matsuura T; Suzuki H
    ACS Synth Biol; 2024 Jan; 13(1):68-76. PubMed ID: 38032418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.