BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 28813430)

  • 41. Adipose tissue-derived mesenchymal stromal cells efficiently differentiate into insulin-producing cells in pancreatic islet microenvironment both in vitro and in vivo.
    Karaoz E; Okcu A; Ünal ZS; Subasi C; Saglam O; Duruksu G
    Cytotherapy; 2013 May; 15(5):557-70. PubMed ID: 23388582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. From pancreatic islet formation to beta-cell regeneration.
    Ben-Othman N; Courtney M; Vieira A; Pfeifer A; Druelle N; Gjernes E; Faurite B; Avolio F; Collombat P
    Diabetes Res Clin Pract; 2013 Jul; 101(1):1-9. PubMed ID: 23380136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. De novo formation of insulin-producing "neo-β cell islets" from intestinal crypts.
    Chen YJ; Finkbeiner SR; Weinblatt D; Emmett MJ; Tameire F; Yousefi M; Yang C; Maehr R; Zhou Q; Shemer R; Dor Y; Li C; Spence JR; Stanger BZ
    Cell Rep; 2014 Mar; 6(6):1046-1058. PubMed ID: 24613355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo.
    Kim Y; Kim H; Ko UH; Oh Y; Lim A; Sohn JW; Shin JH; Kim H; Han YM
    Sci Rep; 2016 Oct; 6():35145. PubMed ID: 27731367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MAFA and T3 Drive Maturation of Both Fetal Human Islets and Insulin-Producing Cells Differentiated From hESC.
    Aguayo-Mazzucato C; DiIenno A; Hollister-Lock J; Cahill C; Sharma A; Weir G; Colton C; Bonner-Weir S
    J Clin Endocrinol Metab; 2015 Oct; 100(10):3651-9. PubMed ID: 26207953
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tumor-Free Transplantation of Patient-Derived Induced Pluripotent Stem Cell Progeny for Customized Islet Regeneration.
    El Khatib MM; Ohmine S; Jacobus EJ; Tonne JM; Morsy SG; Holditch SJ; Schreiber CA; Uetsuka K; Fusaki N; Wigle DA; Terzic A; Kudva YC; Ikeda Y
    Stem Cells Transl Med; 2016 May; 5(5):694-702. PubMed ID: 26987352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro generation of pancreatic β-cells for diabetes treatment. I. β-like cells derived from human pluripotent stem cells.
    Cierpka-Kmiec K; Wronska A; Kmiec Z
    Folia Histochem Cytobiol; 2019; 57(1):1-14. PubMed ID: 30869153
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Beta cells within single human islets originate from multiple progenitors.
    Scharfmann R; Xiao X; Heimberg H; Mallet J; Ravassard P
    PLoS One; 2008; 3(10):e3559. PubMed ID: 18958289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revisiting the immunocytochemical detection of Neurogenin 3 expression in mouse and man.
    Honoré C; Rescan C; Hald J; McGrath PS; Petersen MB; Hansson M; Klein T; Østergaard S; Wells JM; Madsen OD
    Diabetes Obes Metab; 2016 Sep; 18 Suppl 1():10-22. PubMed ID: 27615127
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stress-induced adaptive islet cell identity changes.
    Cigliola V; Thorel F; Chera S; Herrera PL
    Diabetes Obes Metab; 2016 Sep; 18 Suppl 1(Suppl 1):87-96. PubMed ID: 27615136
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcription Factors in Deriving β Cell Regeneration: A Potential Novel Therapeutic Target.
    Marzoog BA; Vlasova TI
    Curr Mol Med; 2022; 22(5):421-430. PubMed ID: 34931980
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reprogramming of human pancreatic exocrine cells to β-like cells.
    Lemper M; Leuckx G; Heremans Y; German MS; Heimberg H; Bouwens L; Baeyens L
    Cell Death Differ; 2015 Jul; 22(7):1117-30. PubMed ID: 25476775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Update on the transdifferentiation of pancreatic cells into functional beta cells for treating diabetes.
    Spezani R; Reis-Barbosa PH; Mandarim-de-Lacerda CA
    Life Sci; 2024 Jun; 346():122645. PubMed ID: 38614297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by MiR-375 and Anti-MiR-9.
    Jafarian A; Taghikani M; Abroun S; Allahverdi A; Lamei M; Lakpour N; Soleimani M
    PLoS One; 2015; 10(6):e0128650. PubMed ID: 26047014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activin Enhances α- to β-Cell Transdifferentiation as a Source For β-Cells In Male FSTL3 Knockout Mice.
    Brown ML; Andrzejewski D; Burnside A; Schneyer AL
    Endocrinology; 2016 Mar; 157(3):1043-54. PubMed ID: 26727106
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of microRNAs regulating Hlxb9 gene expression during the induction of insulin-producing cells.
    Mu C; Wang T; Wang X; Tian H; Liu Y
    Cell Biol Int; 2016 May; 40(5):515-23. PubMed ID: 26801823
    [TBL] [Abstract][Full Text] [Related]  

  • 57.
    Niu G; McQuilling JP; Zhou Y; Opara EC; Orlando G; Soker S
    J Diabetes Res; 2016; 2016():5807876. PubMed ID: 28050568
    [No Abstract]   [Full Text] [Related]  

  • 58. Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing β-cells to a δ-like fate and reveals a facultative proliferative capacity in aged β-cells.
    Pan FC; Brissova M; Powers AC; Pfaff S; Wright CV
    Development; 2015 Nov; 142(21):3637-48. PubMed ID: 26534984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation.
    Ariyachet C; Tovaglieri A; Xiang G; Lu J; Shah MS; Richmond CA; Verbeke C; Melton DA; Stanger BZ; Mooney D; Shivdasani RA; Mahony S; Xia Q; Breault DT; Zhou Q
    Cell Stem Cell; 2016 Mar; 18(3):410-21. PubMed ID: 26908146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent progress in generation of human surrogate β cells.
    Efrat S
    Curr Opin Endocrinol Diabetes Obes; 2013 Aug; 20(4):259-64. PubMed ID: 23807600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.