These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 28813506)
1. Global and local disturbances interact to modify seagrass palatability. Jiménez-Ramos R; Egea LG; Ortega MJ; Hernández I; Vergara JJ; Brun FG PLoS One; 2017; 12(8):e0183256. PubMed ID: 28813506 [TBL] [Abstract][Full Text] [Related]
2. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Tomas F; Martínez-Crego B; Hernán G; Santos R Glob Chang Biol; 2015 Nov; 21(11):4021-30. PubMed ID: 26152761 [TBL] [Abstract][Full Text] [Related]
4. Response of tropical seagrass palatability based on nutritional quality, chemical deterrents and physical defence to ammonium stress and its subsequent effect on herbivory. Fang Y; Jiang Z; Li L; Li J; He J; Liu S; Wu Y; Cui L; Huang X Mar Environ Res; 2022 Dec; 182():105785. PubMed ID: 36308799 [TBL] [Abstract][Full Text] [Related]
5. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
6. The Seagrass Effect Turned Upside Down Changes the Prospective of Sea Urchin Survival and Landscape Implications. Farina S; Guala I; Oliva S; Piazzi L; Pires da Silva R; Ceccherelli G PLoS One; 2016; 11(10):e0164294. PubMed ID: 27783684 [TBL] [Abstract][Full Text] [Related]
7. Future warmer seas: increased stress and susceptibility to grazing in seedlings of a marine habitat-forming species. Hernán G; Ortega MJ; Gándara AM; Castejón I; Terrados J; Tomas F Glob Chang Biol; 2017 Nov; 23(11):4530-4543. PubMed ID: 28544549 [TBL] [Abstract][Full Text] [Related]
8. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Egea LG; Jiménez-Ramos R; Vergara JJ; Hernández I; Brun FG Mar Pollut Bull; 2018 Sep; 134():14-26. PubMed ID: 29475735 [TBL] [Abstract][Full Text] [Related]
9. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing by a generalized herbivore in the northeastern Gulf of Mexico. Valentine JF; Heck KL J Exp Mar Biol Ecol; 2001 Mar; 258(1):65-86. PubMed ID: 11239626 [TBL] [Abstract][Full Text] [Related]
10. Response of Cymodocea nodosa to ocean acidification and warming in the Canary Islands: Direct and indirect effects. Rodríguez A; Moreno-Borges S; Brito A Mar Environ Res; 2022 Apr; 176():105603. PubMed ID: 35325757 [TBL] [Abstract][Full Text] [Related]
11. Effects of ocean acidification on algae growth and feeding rates of juvenile sea urchins. Rodríguez A; Clemente S; Brito A; Hernández JC Mar Environ Res; 2018 Sep; 140():382-389. PubMed ID: 30032994 [TBL] [Abstract][Full Text] [Related]
12. Driving factors of biogeographical variation in seagrass herbivory. Martínez-Crego B; Prado P; Marco-Méndez C; Fernández-Torquemada Y; Espino F; Sánchez-Lizaso JL; de la Ossa JA; Vilella DM; Machado M; Tuya F Sci Total Environ; 2021 Mar; 758():143756. PubMed ID: 33333301 [TBL] [Abstract][Full Text] [Related]
13. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. García E; Clemente S; Hernández JC Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754 [TBL] [Abstract][Full Text] [Related]
14. Compensation and resistance to herbivory in seagrasses: induced responses to simulated consumption by fish. Vergés A; Pérez M; Alcoverro T; Romero J Oecologia; 2008 Apr; 155(4):751-60. PubMed ID: 18193292 [TBL] [Abstract][Full Text] [Related]
15. Exploring coexistence mechanisms in a three-species assemblage. Sanmartí N; Ontoria Y; Ricart AM; Arthur R; Alcoverro T; Pérez M; Romero J Mar Environ Res; 2022 Jun; 178():105647. PubMed ID: 35605380 [TBL] [Abstract][Full Text] [Related]
16. The Role of Seagrass Traits in Mediating Zostera noltei Vulnerability to Mesograzers. Martínez-Crego B; Arteaga P; Tomas F; Santos R PLoS One; 2016; 11(6):e0156848. PubMed ID: 27257679 [TBL] [Abstract][Full Text] [Related]
17. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495 [TBL] [Abstract][Full Text] [Related]
18. Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean. Ferreira CM; Nagelkerken I; Goldenberg SU; Walden G; Leung JYS; Connell SD Sci Total Environ; 2019 Dec; 695():133829. PubMed ID: 31421342 [TBL] [Abstract][Full Text] [Related]
19. Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain. Martínez-Crego B; Vizzini S; Califano G; Massa-Gallucci A; Andolina C; Gambi MC; Santos R Sci Rep; 2020 Mar; 10(1):5103. PubMed ID: 32198395 [TBL] [Abstract][Full Text] [Related]
20. Lack of Impact of Posidonia oceanica Leaf Nutrient Enrichment on Sarpa salpa Herbivory: Additional Evidence for the Generalist Consumer Behavior of This Cornerstone Mediterranean Herbivore. Marco-Méndez C; Wessel C; Scheffel W; Ferrero-Vicente L; Fernández-Torquemada Y; Cebrián J; Heck KL; Sánchez-Lizaso JL PLoS One; 2016; 11(12):e0168398. PubMed ID: 27992498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]