These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28813517)

  • 1. PRmePRed: A protein arginine methylation prediction tool.
    Kumar P; Joy J; Pandey A; Gupta D
    PLoS One; 2017; 12(8):e0183318. PubMed ID: 28813517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of protein methylation sites using conditional random field.
    Xu Y; Ding J; Huang Q; Deng NY
    Protein Pept Lett; 2013 Jan; 20(1):71-7. PubMed ID: 22789108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of protein methylation sites by coupling improved ant colony optimization algorithm and support vector machine.
    Li ZC; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2011 Oct; 703(2):163-71. PubMed ID: 21889630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of methylation sites using the composition of K-spaced amino acid pairs.
    Zhang W; Xu X; Yin M; Luo N; Zhang J; Wang J
    Protein Pept Lett; 2013 Aug; 20(8):911-7. PubMed ID: 23276225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MeMo: a web tool for prediction of protein methylation modifications.
    Chen H; Xue Y; Huang N; Yao X; Sun Z
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W249-53. PubMed ID: 16845004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PMeS: prediction of methylation sites based on enhanced feature encoding scheme.
    Shi SP; Qiu JD; Sun XY; Suo SB; Huang SY; Liang RP
    PLoS One; 2012; 7(6):e38772. PubMed ID: 22719939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepRMethylSite: a deep learning based approach for prediction of arginine methylation sites in proteins.
    Chaudhari M; Thapa N; Roy K; Newman RH; Saigo H; B K C D
    Mol Omics; 2020 Oct; 16(5):448-454. PubMed ID: 32555810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational identification of protein methylation sites through bi-profile Bayes feature extraction.
    Shao J; Xu D; Tsai SN; Wang Y; Ngai SM
    PLoS One; 2009; 4(3):e4920. PubMed ID: 19290060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepPRMS: advanced deep learning model to predict protein arginine methylation sites.
    Khandelwal M; Kumar Rout R
    Brief Funct Genomics; 2024 Jul; 23(4):452-463. PubMed ID: 38267081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.
    Wen PP; Shi SP; Xu HD; Wang LN; Qiu JD
    Bioinformatics; 2016 Oct; 32(20):3107-3115. PubMed ID: 27354692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PRMxAI: protein arginine methylation sites prediction based on amino acid spatial distribution using explainable artificial intelligence.
    Khandelwal M; Rout RK
    BMC Bioinformatics; 2023 Oct; 24(1):376. PubMed ID: 37794362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of protein arginine methylation and protein arginine-methyltransferase activity.
    Mowen KA; David M
    Sci STKE; 2001 Jul; 2001(93):pl1. PubMed ID: 11752667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational prediction of methylation types of covalently modified lysine and arginine residues in proteins.
    Deng W; Wang Y; Ma L; Zhang Y; Ullah S; Xue Y
    Brief Bioinform; 2017 Jul; 18(4):647-658. PubMed ID: 27241573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating structural characteristics for identification of protein methylation sites.
    Shien DM; Lee TY; Chang WC; Hsu JB; Horng JT; Hsu PC; Wang TY; Huang HD
    J Comput Chem; 2009 Jul; 30(9):1532-43. PubMed ID: 19263424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arginine/lysine-methyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation.
    Migliori V; Phalke S; Bezzi M; Guccione E
    Epigenomics; 2010 Feb; 2(1):119-37. PubMed ID: 22122749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AutoMotif server: prediction of single residue post-translational modifications in proteins.
    Plewczynski D; Tkacz A; Wyrwicz LS; Rychlewski L
    Bioinformatics; 2005 May; 21(10):2525-7. PubMed ID: 15728119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable machine learning identification of arginine methylation sites.
    Ali SD; Tayara H; Chong KT
    Comput Biol Med; 2022 Aug; 147():105767. PubMed ID: 35772326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition.
    Ju Z; Wang SY
    Gene; 2018 Jul; 664():78-83. PubMed ID: 29694908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.