These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2881354)

  • 21. Microheterogeneity of actin gels formed under controlled linear shear.
    Cortese JD; Frieden C
    J Cell Biol; 1988 Oct; 107(4):1477-87. PubMed ID: 2844828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-linker dynamics determine the mechanical properties of actin gels.
    Wachsstock DH; Schwarz WH; Pollard TD
    Biophys J; 1994 Mar; 66(3 Pt 1):801-9. PubMed ID: 8011912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intermonolayer friction and surface shear viscosity of lipid bilayer membranes.
    den Otter WK; Shkulipa SA
    Biophys J; 2007 Jul; 93(2):423-33. PubMed ID: 17468168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity.
    Bornens M; Paintrand M; Celati C
    J Cell Biol; 1989 Sep; 109(3):1071-83. PubMed ID: 2570076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Passive mechanical behavior of human neutrophils: effects of colchicine and paclitaxel.
    Tsai MA; Waugh RE; Keng PC
    Biophys J; 1998 Jun; 74(6):3282-91. PubMed ID: 9635782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rheology and contact lifetimes in dense granular flows.
    Silbert LE; Grest GS; Brewster R; Levine AJ
    Phys Rev Lett; 2007 Aug; 99(6):068002. PubMed ID: 17930867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shear thickening and migration in granular suspensions.
    Fall A; Lemaître A; Bertrand F; Bonn D; Ovarlez G
    Phys Rev Lett; 2010 Dec; 105(26):268303. PubMed ID: 21231719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics of living cells measured by laser tracking microrheology.
    Yamada S; Wirtz D; Kuo SC
    Biophys J; 2000 Apr; 78(4):1736-47. PubMed ID: 10733956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rheology of red blood cells under flow in highly confined microchannels: I. effect of elasticity.
    Lázaro GR; Hernández-Machado A; Pagonabarraga I
    Soft Matter; 2014 Oct; 10(37):7195-206. PubMed ID: 25105872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical basis of the rheologic properties of F-actin.
    Zaner KS; Stossel TP
    J Biol Chem; 1983 Sep; 258(18):11004-9. PubMed ID: 6885809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow.
    Lee JS; Panorchan P; Hale CM; Khatau SB; Kole TP; Tseng Y; Wirtz D
    J Cell Sci; 2006 May; 119(Pt 9):1760-8. PubMed ID: 16636071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscoelastic properties of F-actin solutions in the presence of normal and mutated actin-binding proteins.
    Janssen KP; Eichinger L; Janmey PA; Noegel AA; Schliwa M; Witke W; Schleicher M
    Arch Biochem Biophys; 1996 Jan; 325(2):183-9. PubMed ID: 8561496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A NEW PROTEIN-FACTOR HINDERING NETWORK FORMATION OF F-ACTIN IN SOLUTION.
    MARUYAMA K
    Biochim Biophys Acta; 1965 Jan; 94():208-25. PubMed ID: 14273402
    [No Abstract]   [Full Text] [Related]  

  • 34. Altered mechanical properties of actin fibers due to breast cancer invasion: parameter identification based on micropipette aspiration and multiscale tensegrity modeling.
    Tabatabaei M; Tafazzoli-Shadpour M; Khani MM
    Med Biol Eng Comput; 2021 Mar; 59(3):547-560. PubMed ID: 33559086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thiol oxidation of actin produces dimers that enhance the elasticity of the F-actin network.
    Tang JX; Janmey PA; Stossel TP; Ito T
    Biophys J; 1999 Apr; 76(4):2208-15. PubMed ID: 10096915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic mechanical properties of suspensions of micellar casein particles.
    Panouillé M; Benyahia L; Durand D; Nicolai T
    J Colloid Interface Sci; 2005 Jul; 287(2):468-75. PubMed ID: 15925612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive mechanical behavior of human neutrophils: effect of cytochalasin B.
    Tsai MA; Frank RS; Waugh RE
    Biophys J; 1994 Jun; 66(6):2166-72. PubMed ID: 8075350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation.
    Reinke W; Gaehtgens P; Johnson PC
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H540-7. PubMed ID: 3631291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microtubule-associated proteins, MAP 1A and MAP 1B, interact with F-actin in vitro.
    Fujii T; Watanabe M; Ogoma Y; Kondo Y; Arai T
    J Biochem; 1993 Dec; 114(6):827-9. PubMed ID: 7908020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rheology of two-dimensional F-actin networks associated with a lipid interface.
    Walder R; Levine AJ; Dennin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011909. PubMed ID: 18351878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.