BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28813607)

  • 1. Nonlinear Raman Effects Enhanced by Surface Plasmon Excitation in Planar Refractory Nanoantennas.
    Kharintsev SS; Kharitonov AV; Saikin SK; Alekseev AM; Kazarian SG
    Nano Lett; 2017 Sep; 17(9):5533-5539. PubMed ID: 28813607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear Refractory Plasmonics with Titanium Nitride Nanoantennas.
    Gui L; Bagheri S; Strohfeldt N; Hentschel M; Zgrabik CM; Metzger B; Linnenbank H; Hu EL; Giessen H
    Nano Lett; 2016 Sep; 16(9):5708-13. PubMed ID: 27494639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Stokes Emission from Hot Carriers in Gold Nanorods.
    Cai YY; Sung E; Zhang R; Tauzin LJ; Liu JG; Ostovar B; Zhang Y; Chang WS; Nordlander P; Link S
    Nano Lett; 2019 Feb; 19(2):1067-1073. PubMed ID: 30657694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities.
    Schmidt MK; Esteban R; González-Tudela A; Giedke G; Aizpurua J
    ACS Nano; 2016 Jun; 10(6):6291-8. PubMed ID: 27203727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of Molecular Coherent Anti-Stokes Raman Scattering with Silicon Nanoantennas.
    Abedin S; Li Y; Sifat AA; Roy K; Potma EO
    Nano Lett; 2022 Aug; 22(16):6685-6691. PubMed ID: 35960899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Coherent Anti-Stokes Raman Scattering Microscopy Employing Dual-Wavelength Nanofocused Ultrafast Plasmon Pulses.
    Tomita K; Kojima Y; Kannari F
    Nano Lett; 2018 Feb; 18(2):1366-1372. PubMed ID: 29376374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disordered Nonlinear Metalens for Raman Spectral Nanoimaging.
    Kharintsev SS; Kharitonov AV; Gazizov AR; Kazarian SG
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3862-3872. PubMed ID: 31913005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear inelastic electron scattering from Au nanostructures induced by localized surface plasmon resonance.
    Li Z; Xu C; Liu W; Li M; Chen X
    Sci Rep; 2018 Apr; 8(1):5626. PubMed ID: 29618753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superresolution stimulated Raman scattering microscopy using 2-ENZ nano-composites.
    Kharintsev SS; Kharitonov AV; Alekseev AM; Kazarian SG
    Nanoscale; 2019 Apr; 11(16):7710-7719. PubMed ID: 30946390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
    McAnally MO; McMahon JM; Van Duyne RP; Schatz GC
    J Chem Phys; 2016 Sep; 145(9):094106. PubMed ID: 27608988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.
    Aggarwal RL; Farrar LW; Greeneltch NG; Van Duyne RP; Polla DL
    Appl Spectrosc; 2013 Feb; 67(2):132-5. PubMed ID: 23622430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-enhanced four-wave mixing by nanoholes in thin gold films.
    Hagman H; Bäcke O; Kiskis J; Svedberg F; Jonsson MP; Höök F; Enejder A
    Opt Lett; 2014 Feb; 39(4):1001-4. PubMed ID: 24562262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward High-Contrast Atomic Force Microscopy-Tip-Enhanced Raman Spectroscopy Imaging: Nanoantenna-Mediated Remote-Excitation on Sharp-Tip Silver Nanowire Probes.
    Ma X; Zhu Y; Yu N; Kim S; Liu Q; Apontti L; Xu D; Yan R; Liu M
    Nano Lett; 2019 Jan; 19(1):100-107. PubMed ID: 30512954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation.
    Huang J; Wang W; Murphy CJ; Cahill DG
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):906-11. PubMed ID: 24395798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances.
    Farsinezhad S; Shanavas T; Mahdi N; Askar AM; Kar P; Sharma H; Shankar K
    Nanotechnology; 2018 Apr; 29(15):154006. PubMed ID: 29406316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focusing plasmons in nanoslits for surface-enhanced Raman scattering.
    Chen C; Hutchison JA; Van Dorpe P; Kox R; De Vlaminck I; Uji-I H; Hofkens J; Lagae L; Maes G; Borghs G
    Small; 2009 Dec; 5(24):2876-82. PubMed ID: 19816878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.