These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28813786)

  • 1. Prediction of gait events in walking activities with a Bayesian perception system.
    Martinez-Hernandez U; Awad MI; Mahmood I; Dehghani-Sanij AA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():13-18. PubMed ID: 28813786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite Class Bayesian Inference System for Circle and Linear Walking Gait Event Recognition Using Inertial Measurement Units.
    Sheng W; Zha F; Guo W; Qiu S; Sun L; Jia W
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2869-2879. PubMed ID: 33085609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foot angular kinematics measured with inertial measurement units: A reliable criterion for real-time gait event detection.
    Nazarahari M; Khandan A; Khan A; Rouhani H
    J Biomech; 2022 Jan; 130():110880. PubMed ID: 34871897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Event Detection in Controlled and Real-Life Situations: Repeated Measures From Healthy Subjects.
    Figueiredo J; Felix P; Costa L; Moreno JC; Santos CP
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):1945-1956. PubMed ID: 30334739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural networks for detection and classification of walking pattern changes due to ageing.
    Begg R; Kamruzzaman J
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):188-95. PubMed ID: 16845924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Probability Distribution Model-Based Approach for Foot Placement Prediction in the Early Swing Phase With a Wearable IMU Sensor.
    Chen X; Zhang K; Liu H; Leng Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2595-2604. PubMed ID: 34874865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated gait event detection for a variety of locomotion tasks using a novel gyroscope-based algorithm.
    Fadillioglu C; Stetter BJ; Ringhof S; Krafft FC; Sell S; Stein T
    Gait Posture; 2020 Sep; 81():102-108. PubMed ID: 32707401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Trajectory and Event Prediction from State Estimation for Exoskeletons During Gait.
    Tanghe K; De Groote F; Lefeber D; De Schutter J; Aertbelien E
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):211-220. PubMed ID: 31675336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An instance-based algorithm with auxiliary similarity information for the estimation of gait kinematics from wearable sensors.
    Goulermas JY; Findlow AH; Nester CJ; Liatsis P; Zeng XJ; Kenney LP; Tresadern P; Thies SB; Howard D
    IEEE Trans Neural Netw; 2008 Sep; 19(9):1574-82. PubMed ID: 18779089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait event detection on level ground and incline walking using a rate gyroscope.
    Catalfamo P; Ghoussayni S; Ewins D
    Sensors (Basel); 2010; 10(6):5683-702. PubMed ID: 22219682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network.
    Taborri J; Rossi S; Palermo E; Patanè F; Cappa P
    Sensors (Basel); 2014 Sep; 14(9):16212-34. PubMed ID: 25184488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of minimum ground clearance (MGC) using body-worn inertial sensors.
    McGrath D; Greene BR; Walsh C; Caulfield B
    J Biomech; 2011 Apr; 44(6):1083-8. PubMed ID: 21353226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinematic method for computing the motion of the body centre-of-mass (CoM) during walking: a Bayesian approach.
    Martínez F; Gómez F; Romero E
    Comput Methods Biomech Biomed Engin; 2011 Jun; 14(6):561-72. PubMed ID: 21630165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial sensing of the motion speed effect on the sit-to-walk activity.
    Kondilopoulos N; Rousanoglou EN; Boudolos KD
    Gait Posture; 2018 Mar; 61():111-116. PubMed ID: 29324296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional GRF and CoP Estimation during Stair and Slope Ascent/Descent with Wearable IMUs and Foot Pressure Sensors.
    Fukushi K; Sekiguchi Y; Honda K; Yaguchi H; Izumi SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6401-6404. PubMed ID: 31947307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of multi-segment foot joint angles during gait using a wearable system.
    Rouhani H; Favre J; Crevoisier X; Aminian K
    J Biomech Eng; 2012 Jun; 134(6):061006. PubMed ID: 22757503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.