These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 28813788)

  • 1. A novel pneumatic stimulator for the investigation of noise-enhanced proprioception.
    Georgarakis AM; Sonar HA; Rinderknecht MD; Lambercy O; Martin BJ; Klamroth-Marganska V; Paik J; Riener R; Duarte JE
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():25-30. PubMed ID: 28813788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of age and amplitude on wrist proprioceptive acuity.
    Marini F; Hughes CML; Morasso P; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():609-614. PubMed ID: 28813887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-Dependent Asymmetry of Wrist Position Sense Is Not Influenced by Stochastic Tactile Stimulation.
    Georgarakis AM; Sonar HA; Rinderknecht MD; Popp WL; Duarte JE; Lambercy O; Paik J; Martin BJ; Riener R; Klamroth-Marganska V
    Front Hum Neurosci; 2020; 14():65. PubMed ID: 32194386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients.
    Cordo P; Lutsep H; Cordo L; Wright WG; Cacciatore T; Skoss R
    Neurorehabil Neural Repair; 2009 Jan; 23(1):67-77. PubMed ID: 18645190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement.
    Elangovan N; Cappello L; Masia L; Aman J; Konczak J
    Sci Rep; 2017 Dec; 7(1):17054. PubMed ID: 29213051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. H-Man: a planar, H-shape cabled differential robotic manipulandum for experiments on human motor control.
    Campolo D; Tommasino P; Gamage K; Klein J; Hughes CM; Masia L
    J Neurosci Methods; 2014 Sep; 235():285-97. PubMed ID: 25058923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic assessment of the contribution of motor commands to wrist position sense.
    Contu S; Marini F; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():941-946. PubMed ID: 28813942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-assisted training to improve proprioception does benefit from added vibro-tactile feedback.
    Cuppone A; Squeri V; Semprini M; Konczak J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():258-61. PubMed ID: 26736249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Codification mechanisms of wrist position sense.
    Marini F; Contu S; Morasso P; Masia L; Zenzeri J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():44-49. PubMed ID: 28813791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robot-aided visuomotor wrist training induces gains in proprioceptive and movement accuracy in the contralateral wrist.
    Wang Y; Zhu H; Elangovan N; Cappello L; Sandini G; Masia L; Konczak J
    Sci Rep; 2021 Mar; 11(1):5281. PubMed ID: 33674684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural imbalance and vibratory sensitivity in patients with idiopathic scoliosis: implications for treatment.
    Byl NN; Holland S; Jurek A; Hu SS
    J Orthop Sports Phys Ther; 1997 Aug; 26(2):60-8. PubMed ID: 9243403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3DOM: a 3 degree of freedom manipulandum to investigate redundant motor control.
    Klein J; Roach N; Burdet E
    IEEE Trans Haptics; 2014; 7(2):229-39. PubMed ID: 24968384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and validation of a MR-compatible pneumatic manipulandum.
    Suminski AJ; Zimbelman JL; Scheidt RA
    J Neurosci Methods; 2007 Jul; 163(2):255-66. PubMed ID: 17498811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-Aided Mapping of Wrist Proprioceptive Acuity across a 3D Workspace.
    Marini F; Squeri V; Morasso P; Konczak J; Masia L
    PLoS One; 2016; 11(8):e0161155. PubMed ID: 27536882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proprioceptive consequences of tendon vibration during movement.
    Cordo P; Gurfinkel VS; Bevan L; Kerr GK
    J Neurophysiol; 1995 Oct; 74(4):1675-88. PubMed ID: 8989404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of proprioceptive feedback to sensorimotor adaptation.
    Pipereit K; Bock O; Vercher JL
    Exp Brain Res; 2006 Sep; 174(1):45-52. PubMed ID: 16528496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proprioceptive feedback enhancement induced by vibratory stimulation in complex regional pain syndrome type I: an open comparative pilot study in 11 patients.
    Gay A; Parratte S; Salazard B; Guinard D; Pham T; Legré R; Roll JP
    Joint Bone Spine; 2007 Oct; 74(5):461-6. PubMed ID: 17693114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying lower limb joint position sense using a robotic exoskeleton: a pilot study.
    Domingo A; Marriott E; de Grave RB; Lam T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975455. PubMed ID: 22275653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time control of stepper motors for mechano-sensory stimulation.
    Muñiz C; Levi R; Benkrid M; Rodríguez FB; Varona P
    J Neurosci Methods; 2008 Jul; 172(1):105-11. PubMed ID: 18511126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences between body movement adaptation to calf and neck muscle vibratory proprioceptive stimulation.
    Gomez S; Patel M; Magnusson M; Johansson L; Einarsson EJ; Fransson PA
    Gait Posture; 2009 Jul; 30(1):93-9. PubMed ID: 19398340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.