These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28813793)

  • 21. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, control and validation of the variable stiffness exoskeleton FLExo.
    Mghames S; Laghi M; Della Santina C; Garabini M; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():539-546. PubMed ID: 28813876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements.
    Irastorza-Landa N; Sarasola-Sanz A; Lopez-Larraz E; Bibian C; Shiman P; Birbaumer N; Ramos-Murguialday A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():128-133. PubMed ID: 28813806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arm rehabilitation in post stroke subjects: A randomized controlled trial on the efficacy of myoelectrically driven FES applied in a task-oriented approach.
    Jonsdottir J; Thorsen R; Aprile I; Galeri S; Spannocchi G; Beghi E; Bianchi E; Montesano A; Ferrarin M
    PLoS One; 2017; 12(12):e0188642. PubMed ID: 29200424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EMG-triggered electrical stimulation is a feasible intervention to apply to multiple arm muscles in people early after stroke, but does not improve strength and activity more than usual therapy: a randomized feasibility trial.
    Dorsch S; Ada L; Canning CG
    Clin Rehabil; 2014 May; 28(5):482-90. PubMed ID: 24198342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings.
    Tu X; Han H; Huang J; Li J; Su C; Jiang X; He J
    J Healthc Eng; 2017; 2017():1282934. PubMed ID: 29065566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid Assistive Neuromuscular Dynamic Stimulation Therapy: A New Strategy for Improving Upper Extremity Function in Patients with Hemiparesis following Stroke.
    Fujiwara T; Kawakami M; Honaga K; Tochikura M; Abe K
    Neural Plast; 2017; 2017():2350137. PubMed ID: 28191352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wristband Accelerometers to motiVate arm Exercise after Stroke (WAVES): study protocol for a pilot randomized controlled trial.
    Moore SA; Da Silva R; Balaam M; Brkic L; Jackson D; Jamieson D; Ploetz T; Rodgers H; Shaw L; van Wijck F; Price C
    Trials; 2016 Oct; 17(1):508. PubMed ID: 27769310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrically Assisted Movement Therapy in Chronic Stroke Patients With Severe Upper Limb Paresis: A Pilot, Single-Blind, Randomized Crossover Study.
    Carda S; Biasiucci A; Maesani A; Ionta S; Moncharmont J; Clarke S; Murray MM; Millán JDR
    Arch Phys Med Rehabil; 2017 Aug; 98(8):1628-1635.e2. PubMed ID: 28499657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Arm Weight Support Training to Promote Recovery of Upper Limb Function for Subacute Patients after Stroke with Different Levels of Arm Impairments.
    Chan IH; Fong KN; Chan DY; Wang AQ; Cheng EK; Chau PH; Chow KK; Cheung HK
    Biomed Res Int; 2016; 2016():9346374. PubMed ID: 27517053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Gravity Compensation on Upper Extremity Movements in Harmony Exoskeleton.
    Hailey RO; De Oliveira AC; Ghonasgi K; Whitford B; Lee RK; Rose CG; Deshpande AD
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of EMG triggered electrical stimulation plus task practice on arm function in chronic stroke patients with moderate-severe arm deficits.
    Singer BJ; Vallence AM; Cleary S; Cooper I; Loftus AM
    Restor Neurol Neurosci; 2013; 31(6):681-91. PubMed ID: 23963340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upper limb motor training using a Saebo
    Lannin NA; Cusick A; Hills C; Kinnear B; Vogel K; Matthews K; Bowring G
    Aust Occup Ther J; 2016 Dec; 63(6):364-372. PubMed ID: 27646624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device.
    Miao Q; Zhang M; Wang Y; Xie SQ
    J Healthc Eng; 2017; 2017():7640325. PubMed ID: 29104747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations.
    Kutlu M; Freeman CT; Hallewell E; Hughes AM; Laila DS
    Med Eng Phys; 2016 Apr; 38(4):366-79. PubMed ID: 26947097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of Functional Electrical Stimulation Cycling System for Lower-Limb Rehabilitation of Stroke Patients.
    Wang X; Leung KW; Fang Y; Chen S; Tong RK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2337-2340. PubMed ID: 30440875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A robotic workstation for stroke rehabilitation of the upper extremity using FES.
    Freeman CT; Hughes AM; Burridge JH; Chappell PH; Lewin PL; Rogers E
    Med Eng Phys; 2009 Apr; 31(3):364-73. PubMed ID: 18640865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation.
    Lambelet C; Lyu M; Woolley D; Gassert R; Wenderoth N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():726-733. PubMed ID: 28813906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.