These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 28813796)
21. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Sheng B; Zhang Y; Meng W; Deng C; Xie S Med Eng Phys; 2016 Jul; 38(7):587-606. PubMed ID: 27117423 [TBL] [Abstract][Full Text] [Related]
22. Gravity compensation of an upper extremity exoskeleton. Moubarak S; Pham MT; Moreau R; Redarce T Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4489-93. PubMed ID: 21095778 [TBL] [Abstract][Full Text] [Related]
23. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy. Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226 [TBL] [Abstract][Full Text] [Related]
24. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke. Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595 [TBL] [Abstract][Full Text] [Related]
25. An explorative study into changes in circle drawing after gravity compensation training in chronic stroke patients. Prange GB; Krabben T; Stienen AH; van der Kooij H; Rietman JS; Buurke JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975402. PubMed ID: 22275605 [TBL] [Abstract][Full Text] [Related]
26. Music meets robotics: a prospective randomized study on motivation during robot aided therapy. Baur K; Speth F; Nagle A; Riener R; Klamroth-Marganska V J Neuroeng Rehabil; 2018 Aug; 15(1):79. PubMed ID: 30115082 [TBL] [Abstract][Full Text] [Related]
27. Influence of gravity compensation on muscle activation patterns during different temporal phases of arm movements of stroke patients. Prange GB; Jannink MJ; Stienen AH; van der Kooij H; Ijzerman MJ; Hermens HJ Neurorehabil Neural Repair; 2009 Jun; 23(5):478-85. PubMed ID: 19190089 [TBL] [Abstract][Full Text] [Related]
28. Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT. Zhang H; Austin H; Buchanan S; Herman R; Koeneman J; He J IEEE Int Conf Rehabil Robot; 2011; 2011():5975440. PubMed ID: 22275640 [TBL] [Abstract][Full Text] [Related]
29. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
30. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498 [TBL] [Abstract][Full Text] [Related]
31. Experimental results using force-feedback cueing in robot-assisted stroke therapy. Johnson MJ; Van der Loos HF; Burgar CG; Shor P; Leifer LJ IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):335-48. PubMed ID: 16200757 [TBL] [Abstract][Full Text] [Related]
32. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy. Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266 [TBL] [Abstract][Full Text] [Related]
33. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training. Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459 [TBL] [Abstract][Full Text] [Related]
34. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training. Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614 [TBL] [Abstract][Full Text] [Related]
35. A study on the operation of rehabilitation interfaces in active rehabilitation exercises for upper limb hemiplegic patients: Interfaces for lateral and bilateral exercises. Eom SH; Lee EH Technol Health Care; 2016 Apr; 24 Suppl 2():S607-23. PubMed ID: 27163324 [TBL] [Abstract][Full Text] [Related]
36. Effects of robot-aided bilateral force-induced isokinetic arm training combined with conventional rehabilitation on arm motor function in patients with chronic stroke. Chang JJ; Tung WL; Wu WL; Huang MH; Su FC Arch Phys Med Rehabil; 2007 Oct; 88(10):1332-8. PubMed ID: 17908578 [TBL] [Abstract][Full Text] [Related]
37. Design & control of a 3D stroke rehabilitation platform. Cai Z; Tong D; Meadmore KL; Freeman CT; Hughes AM; Rogers E; Burridge JH IEEE Int Conf Rehabil Robot; 2011; 2011():5975412. PubMed ID: 22275615 [TBL] [Abstract][Full Text] [Related]
38. Robotic unilateral and bilateral upper-limb movement training for stroke survivors afflicted by chronic hemiparesis. Simkins M; Kim H; Abrams G; Byl N; Rosen J IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650506. PubMed ID: 24187321 [TBL] [Abstract][Full Text] [Related]
39. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
40. Robotic arm skate for stroke rehabilitation. Wong CK; Jordan K; King M IEEE Int Conf Rehabil Robot; 2011; 2011():5975389. PubMed ID: 22275593 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]