These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28813797)

  • 1. Improving motor skill transfer during dyadic robot training through the modulation of the expert role.
    Galofaro E; Morasso P; Zenzeri J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():78-83. PubMed ID: 28813797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skill Learning and Skill Transfer Mediated by Cooperative Haptic Interaction.
    Avila Mireles EJ; Zenzeri J; Squeri V; Morasso P; De Santis D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):832-843. PubMed ID: 28500006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning and transfer of complex motor skills in virtual reality: a perspective review.
    Levac DE; Huber ME; Sternad D
    J Neuroeng Rehabil; 2019 Oct; 16(1):121. PubMed ID: 31627755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of robotically modulating kinematic variability on motor skill learning and motivation.
    Duarte JE; Reinkensmeyer DJ
    J Neurophysiol; 2015 Apr; 113(7):2682-91. PubMed ID: 25673732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain activations underlying different patterns of performance improvement during early motor skill learning.
    Lefebvre S; Dricot L; Gradkowski W; Laloux P; Vandermeeren Y
    Neuroimage; 2012 Aug; 62(1):290-9. PubMed ID: 22569545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BioMotionBot: a robotic device for applications in human motor learning and rehabilitation.
    Bartenbach V; Sander C; Pöschl M; Wilging K; Nelius T; Doll F; Burger W; Stockinger C; Focke A; Stein T
    J Neurosci Methods; 2013 Mar; 213(2):282-97. PubMed ID: 23276545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DoF Robot Arm.
    Ison M; Vujaklija I; Whitsell B; Farina D; Artemiadis P
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):424-33. PubMed ID: 25838524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved single pellet grasping using automated ad libitum full-time training robot.
    Fenrich KK; May Z; Hurd C; Boychuk CE; Kowalczewski J; Bennett DJ; Whishaw IQ; Fouad K
    Behav Brain Res; 2015 Mar; 281():137-48. PubMed ID: 25523027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward 'optimal' schemes of robot assistance to facilitate motor skill learning.
    Basteris A; Sanguineti V
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2355-8. PubMed ID: 22254814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collaborative training with a more experienced partner: remediating low pretraining self-efficacy in complex skill acquisition.
    Day EA; Boatman PR; Kowollik V; Espejo J; McEntire LE; Sherwin RE
    Hum Factors; 2007 Dec; 49(6):1132-48. PubMed ID: 18074711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural correlates of motor learning and performance in a virtual ball putting task.
    Pitto L; Novakovic V; Basteris A; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975487. PubMed ID: 22275684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic guidance induces long-lasting changes in the movement pattern of a novel sport-specific motor task.
    Kümmel J; Kramer A; Gruber M
    Hum Mov Sci; 2014 Dec; 38():23-33. PubMed ID: 25238621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive regulation of assistance 'as needed' in robot-assisted motor skill learning and neuro-rehabilitation.
    Squeri V; Basteris A; Sanguineti V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975375. PubMed ID: 22275579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance maintenance as an acquired motor skill: Delayed gains and robust retention after a single session of training in a virtual environment.
    Elion O; Sela I; Bahat Y; Siev-Ner I; Weiss PL; Karni A
    Brain Res; 2015 Jun; 1609():54-62. PubMed ID: 25797802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of skill level matching in dyadic interaction on learning of a tracing task.
    Kager S; Hussain A; Cherpin A; Melendez-Calderon A; Takagi A; Endo S; Burdet E; Hirche S; Ang MH; Campolo D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():824-829. PubMed ID: 31374732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning a locomotor task: with or without errors?
    Marchal-Crespo L; Schneider J; Jaeger L; Riener R
    J Neuroeng Rehabil; 2014 Mar; 11():25. PubMed ID: 24594267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.