These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28813812)

  • 1. Characterization of surface electromyography patterns of healthy and incomplete spinal cord injury subjects interacting with an upper-extremity exoskeleton.
    McDonald CG; Dennis TA; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():164-169. PubMed ID: 28813812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Myoelectric Control Interface for Upper-Limb Robotic Rehabilitation Following Spinal Cord Injury.
    McDonald CG; Sullivan JL; Dennis TA; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):978-987. PubMed ID: 32167899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.
    Lu Z; Chen X; Zhang X; Tong KY; Zhou P
    Int J Neural Syst; 2017 Aug; 27(5):1750009. PubMed ID: 27873553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Offline and online myoelectric pattern recognition analysis and real-time control of a robotic hand after spinal cord injury.
    Lu Z; Stampas A; Francisco GE; Zhou P
    J Neural Eng; 2019 Jun; 16(3):036018. PubMed ID: 30836346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities.
    Ambrosini E; Ferrante S; Schauer T; Klauer C; Gaffuri M; Ferrigno G; Pedrocchi A
    J Electromyogr Kinesiol; 2014 Apr; 24(2):307-17. PubMed ID: 24529798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L; Hu X; Hu J; Fang Y; He R; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain motor control assessment of upper limb function in patients with spinal cord injury.
    Zoghi M; Galea M; Morgan D
    J Spinal Cord Med; 2016; 39(2):162-74. PubMed ID: 25582333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T; Sakurada T; Koike Y; Kansaku K
    J Neural Eng; 2017 Feb; 14(1):016015. PubMed ID: 28068293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements.
    Irastorza-Landa N; Sarasola-Sanz A; Lopez-Larraz E; Bibian C; Shiman P; Birbaumer N; Ramos-Murguialday A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():128-133. PubMed ID: 28813806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches.
    Smith AJJ; Fournier BN; Nantel J; Lemaire ED
    J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voluntary control of wearable robotic exoskeletons by patients with paresis via neuromechanical modeling.
    Durandau G; Farina D; Asín-Prieto G; Dimbwadyo-Terrer I; Lerma-Lara S; Pons JL; Moreno JC; Sartori M
    J Neuroeng Rehabil; 2019 Jul; 16(1):91. PubMed ID: 31315633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.
    Singh H; Unger J; Zariffa J; Pakosh M; Jaglal S; Craven BC; Musselman KE
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):704-715. PubMed ID: 29334467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.
    Cortés C; de Los Reyes-Guzmán A; Scorza D; Bertelsen Á; Carrasco E; Gil-Agudo Á; Ruiz-Salguero O; Flórez J
    Biomed Res Int; 2016; 2016():2581924. PubMed ID: 27403420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injury.
    Liu J; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):96-103. PubMed ID: 23033334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.
    Ramanujam A; Cirnigliaro CM; Garbarini E; Asselin P; Pilkar R; Forrest GF
    J Spinal Cord Med; 2018 Sep; 41(5):518-528. PubMed ID: 28427305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical feasibility of gait training with a robotic exoskeleton (WPAL) in an individual with both incomplete cervical and complete thoracic spinal cord injury: A case study.
    Tanabe S; Koyama S; Saitoh E; Hirano S; Yatsuya K; Tsunoda T; Katoh M; Gotoh T; Furumoto A
    NeuroRehabilitation; 2017; 41(1):85-95. PubMed ID: 28527225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic training and clinical assessment of upper extremity movements after spinal cord injury: a single case report.
    Yozbatiran N; Berliner J; O'Malley MK; Pehlivan AU; Kadivar Z; Boake C; Francisco GE
    J Rehabil Med; 2012 Feb; 44(2):186-8. PubMed ID: 22334347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.