These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 28813819)

  • 1. MIT-Skywalker: On the use of a markerless system.
    Goncalves RS; Hamilton T; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():205-210. PubMed ID: 28813819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MIT-Skywalker: Evaluating comfort of bicycle/saddle seat.
    Goncalves RS; Hamilton T; Daher AR; Hirai H; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():516-520. PubMed ID: 28813872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy.
    Susko T; Swaminathan K; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of partial body-weight support and functional electrical stimulation on gait characteristics during treadmill locomotion: Pros and cons of saddle-seat-type body-weight support.
    Kataoka N; Hirai H; Hamilton T; Yoshikawa F; Kuroiwa A; Nagakawa Y; Watanabe E; Ninomaru Y; Saeki Y; Uemura M; Miyazaki F; Nakata H; Nishi T; Naritomi H; Krebs HI
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():381-386. PubMed ID: 28813849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MIT-Skywalker: considerations on the Design of a Body Weight Support System.
    Gonçalves RS; Krebs HI
    J Neuroeng Rehabil; 2017 Sep; 14(1):88. PubMed ID: 28877750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel robot-assisted training approach for improving gait symmetry after stroke.
    Zadravec M; Olensek A; Rudolf M; Bizovicar N; Goljar N; Matjacic Z
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():222-227. PubMed ID: 28813822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlimb coordination evoked by unilateral mechanical perturbation during body-weight supported gait.
    Artemiadis PK; Krebs HI
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975513. PubMed ID: 22275709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the control of the MIT-skywalker.
    Artemiadis PK; Krebs HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1287-91. PubMed ID: 21095920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized design of a parallel robot for gait training.
    Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ROBOT - Assisted Rehabilitation in Patients After Stroke.
    Kefaliakos A; Pliakos I; Kalokerinou A; Mechili A; Diomidous M
    Stud Health Technol Inform; 2014; 202():316. PubMed ID: 25000084
    [No Abstract]   [Full Text] [Related]  

  • 12. Identifying the effects of using integrated haptic feedback for gait rehabilitation of stroke patients.
    Afzal MR; Pyo S; Oh MK; Park YS; Yoon J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1055-1060. PubMed ID: 28813961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Let's do this together: Bi-Manu-Interact, a novel device for studying human haptic interactive behavior.
    Ivanova E; Krause A; Schalicke M; Schellhardt F; Jankowski N; Achner J; Schmidt H; Joebges M; Kruger J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():708-713. PubMed ID: 28813903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors.
    Wong CK; Bishop L; Stein J
    Prosthet Orthot Int; 2012 Mar; 36(1):113-20. PubMed ID: 22082495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports.
    Bishop L; Khan M; Martelli D; Quinn L; Stein J; Agrawal S
    Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S135-S140. PubMed ID: 28661914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic Assessment of a Rollator-User's Condition During Rehabilitation Using the i-Walker Platform.
    Ballesteros J; Urdiales C; Martinez AB; Tirado M
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2009-2017. PubMed ID: 28459694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits.
    Wang P; Low KH; Tow A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.
    Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully embedded myoelectric control for a wearable robotic hand orthosis.
    Ryser F; Butzer T; Held JP; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():615-621. PubMed ID: 28813888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.