These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28813823)

  • 41. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation.
    Narayan J; Kumar Dwivedy S
    Proc Inst Mech Eng H; 2021 May; 235(5):530-545. PubMed ID: 33588634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation.
    Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H
    Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton.
    Jebri A; Madani T; Djouani K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integration and Testing of a High-Torque Servo-Driven Joint and Its Electronic Controller with Application in a Prototype Upper Limb Exoskeleton.
    VĂ©lez-Guerrero MA; Callejas-Cuervo M; Mazzoleni S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833796
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of Robotic Exoskeleton Motion Constraints on Upper Limb Muscle Synergies: A Case Study.
    Mcdonald CG; Fregly BJ; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2086-2095. PubMed ID: 34618674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Feedback From Mono-Articular Muscles is Sufficient for Exoskeleton Torque Adaptation.
    Nasiri R; Rayati M; Nili Ahmadabadi M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2097-2106. PubMed ID: 31545735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation.
    Goergen R; Valdiero AC; Rasia LA; Oberdorfer M; de Souza JP; Goncalves RS
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():187-192. PubMed ID: 31374628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Online sparse Gaussian process based human motion intent learning for an electrically actuated lower extremity exoskeleton.
    Long Y; Du ZJ; Chen CF; Dong W; Wang WD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():919-924. PubMed ID: 28813938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the stiffness analysis of a cable driven leg exoskeleton.
    Sanjeevi NSS; Vashista V
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():455-460. PubMed ID: 28813862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Single-Joint Implementation of Flow Control: Knee Joint Walking Assistance for Individuals With Mobility Impairment.
    Martinez A; Durrough C; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):934-942. PubMed ID: 32142447
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Voluntary Control of an Ankle Joint Exoskeleton by Able-Bodied Individuals and Stroke Survivors Using EMG-Based Admittance Control Scheme.
    Zhuang Y; Leng Y; Zhou J; Song R; Li L; Su SW
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):695-705. PubMed ID: 32746072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gastrocnemius myoelectric control of a robotic hip exoskeleton.
    Grazi L; Crea S; Parri A; Yan T; Cortese M; Giovacchini F; Cempini M; Pasquini G; Micera S; Vitiello N
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3881-4. PubMed ID: 26737141
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control.
    Liang C; Hsiao T
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co-Ex: A Torque-Controllable Lower Body Exoskeleton for Dependable Human-Robot Co-existence.
    Yildirim MC; Kansizoglu AT; Emre S; Derman M; Coruk S; Soliman AF; Sendur P; Ugurlu B
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():605-610. PubMed ID: 31374697
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Force control of wire driving lower limb rehabilitation robot.
    Zou Y; Ma H; Han Z; Song Y; Liu K
    Technol Health Care; 2018; 26(S1):399-408. PubMed ID: 29758963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.