These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28813829)

  • 21. Gait evaluation of the advanced reciprocating gait orthosis with solid versus dorsi flexion assist ankle foot orthoses in paraplegic patients.
    Bani MA; Arazpour M; Ghomshe FT; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Apr; 37(2):161-7. PubMed ID: 22988045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foot trajectory approximation using the pendulum model of walking.
    Fang J; Vuckovic A; Galen S; Conway BA; Hunt KJ
    Med Biol Eng Comput; 2014 Jan; 52(1):45-52. PubMed ID: 24057114
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.
    Arazpour M; Ahmadi Bani M; Samadian M; Mousavi ME; Hutchins SW; Bahramizadeh M; Curran S; Mardani MA
    Prosthet Orthot Int; 2016 Aug; 40(4):454-9. PubMed ID: 26195618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion.
    Canton S; MacLellan MJ
    Hum Mov Sci; 2018 Feb; 57():314-323. PubMed ID: 28958710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee-ankle-foot orthosis and a new powered knee-ankle-foot orthosis.
    Arazpour M; Ahmadi F; Bahramizadeh M; Samadian M; Mousavi ME; Bani MA; Hutchins SW
    Prosthet Orthot Int; 2016 Dec; 40(6):689-695. PubMed ID: 26269446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME
    Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-related changes in arm motion during typical gait.
    Van de Walle P; Meyns P; Desloovere K; De Rijck J; Kenis J; Verbecque E; Van Criekinge T; Hallemans A
    Gait Posture; 2018 Oct; 66():51-57. PubMed ID: 30145475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced arm swing alters interlimb coordination during overground walking in individuals with traumatic brain injury.
    Ustinova KI; Langenderfer JE; Balendra N
    Hum Mov Sci; 2017 Apr; 52():45-54. PubMed ID: 28110146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of gait between healthy participants and persons with spinal cord injury when using a powered gait orthosis-a pilot study.
    Arazpour M; Mehrpour SR; Bani MA; Hutchins SW; Bahramizadeh M; Rahgozar M
    Spinal Cord; 2014 Jan; 52(1):44-8. PubMed ID: 24296806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis.
    Hidler J; Wisman W; Neckel N
    Clin Biomech (Bristol, Avon); 2008 Dec; 23(10):1251-9. PubMed ID: 18849098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of stance control orthoses on gait characteristics and energy expenditure in knee-ankle-foot orthosis users.
    Davis PC; Bach TM; Pereira DM
    Prosthet Orthot Int; 2010 Jun; 34(2):206-15. PubMed ID: 20470059
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A reciprocal walking orthosis hip joint for young paediatric patients with a variety of pathological conditions.
    Woolam PJ; Lomas B; Stallard J
    Prosthet Orthot Int; 2001 Apr; 25(1):47-52. PubMed ID: 11411005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of human walking with powered orthosis for designing practical assistive device.
    Uchiyama Y; Nagai C; Obinata G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4816-9. PubMed ID: 23367005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an assist controller with robot suit HAL for hemiplegic patients using motion data on the unaffected side.
    Kawamoto H; Kandone H; Sakurai T; Ariyasu R; Ueno Y; Eguchi K; Sankai Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3077-80. PubMed ID: 25570641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking.
    Mun KR; Guo Z; Yu H
    Med Biol Eng Comput; 2016 Nov; 54(11):1621-1629. PubMed ID: 26830107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The efficacy of powered orthoses on walking in persons with paraplegia.
    Arazpour M; Hutchins SW; Ahmadi Bani M
    Prosthet Orthot Int; 2015 Apr; 39(2):90-9. PubMed ID: 24549210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical Design and Control System Development of a Rehabilitation Robotic System for Walking With Arm Swing.
    Fang J; Hunt KJ
    Front Rehabil Sci; 2021; 2():720182. PubMed ID: 36188797
    [No Abstract]   [Full Text] [Related]  

  • 39. Effects of ankle-foot orthoses on mediolateral foot-placement ability during post-stroke gait.
    Zissimopoulos A; Fatone S; Gard S
    Prosthet Orthot Int; 2015 Oct; 39(5):372-9. PubMed ID: 24878846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters.
    Schmalz T; Pröbsting E; Auberger R; Siewert G
    Prosthet Orthot Int; 2016 Apr; 40(2):277-86. PubMed ID: 25249381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.