These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 28813836)
1. Development of new rehabilitation robot device that can be attached to the conventional Knee-Ankle-Foot-Orthosis for controlling the knee in individuals after stroke. Shihomi K; Koji O; Tadao T; Yuichi S; Yoshiyuki H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():304-307. PubMed ID: 28813836 [TBL] [Abstract][Full Text] [Related]
2. Effects of a knee-ankle-foot orthosis on gait biomechanical characteristics of paretic and non-paretic limbs in hemiplegic patients with genu recurvatum. Boudarham J; Zory R; Genet F; Vigné G; Bensmail D; Roche N; Pradon D Clin Biomech (Bristol); 2013 Jan; 28(1):73-8. PubMed ID: 23072781 [TBL] [Abstract][Full Text] [Related]
3. Effects of plantar flexion resistive moment generated by an ankle-foot orthosis with an oil damper on the gait of stroke patients: a pilot study. Yamamoto S; Tomokiyo N; Yasui T; Kawaguchi T Prosthet Orthot Int; 2013 Jun; 37(3):212-21. PubMed ID: 23075466 [TBL] [Abstract][Full Text] [Related]
4. Comparison of ankle-foot orthoses with plantar flexion stop and plantar flexion resistance in the gait of stroke patients: A randomized controlled trial. Yamamoto S; Tanaka S; Motojima N Prosthet Orthot Int; 2018 Oct; 42(5):544-553. PubMed ID: 29865941 [TBL] [Abstract][Full Text] [Related]
5. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis. Yakimovich T; Lemaire ED; Kofman J Clin Biomech (Bristol); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186 [TBL] [Abstract][Full Text] [Related]
6. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study. Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of gait symmetry in poliomyelitis subjects: Comparison of a conventional knee-ankle-foot orthosis and a new powered knee-ankle-foot orthosis. Arazpour M; Ahmadi F; Bahramizadeh M; Samadian M; Mousavi ME; Bani MA; Hutchins SW Prosthet Orthot Int; 2016 Dec; 40(6):689-695. PubMed ID: 26269446 [TBL] [Abstract][Full Text] [Related]
8. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
9. The immediate effects of fitting and tuning solid ankle-foot orthoses in early stroke rehabilitation. Carse B; Bowers R; Meadows BC; Rowe P Prosthet Orthot Int; 2015 Dec; 39(6):454-62. PubMed ID: 24938770 [TBL] [Abstract][Full Text] [Related]
10. Effects of ankle foot orthosis in stiff knee gait in adults with hemiplegia. Gatti MA; Freixes O; Fernández SA; Rivas ME; Crespo M; Waldman SV; Olmos LE J Biomech; 2012 Oct; 45(15):2658-61. PubMed ID: 22980576 [TBL] [Abstract][Full Text] [Related]
11. Gait evaluation of the advanced reciprocating gait orthosis with solid versus dorsi flexion assist ankle foot orthoses in paraplegic patients. Bani MA; Arazpour M; Ghomshe FT; Mousavi ME; Hutchins SW Prosthet Orthot Int; 2013 Apr; 37(2):161-7. PubMed ID: 22988045 [TBL] [Abstract][Full Text] [Related]
12. Immediate-term effects of use of an ankle-foot orthosis with an oil damper on the gait of stroke patients when walking without the device. Yamamoto S; Ibayashi S; Fuchi M; Yasui T Prosthet Orthot Int; 2015 Apr; 39(2):140-9. PubMed ID: 24469429 [TBL] [Abstract][Full Text] [Related]
13. The influence of a powered knee-ankle-foot orthosis on walking in poliomyelitis subjects: A pilot study. Arazpour M; Moradi A; Samadian M; Bahramizadeh M; Joghtaei M; Ahmadi Bani M; Hutchins SW; Mardani MA Prosthet Orthot Int; 2016 Jun; 40(3):377-83. PubMed ID: 26184037 [TBL] [Abstract][Full Text] [Related]
14. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
15. Using musculoskeletal modeling to evaluate the effect of ankle foot orthosis tuning on musculotendon dynamics: a case study. Choi H; Bjornson K; Fatone S; Steele KM Disabil Rehabil Assist Technol; 2016 Oct; 11(7):613-8. PubMed ID: 25640240 [TBL] [Abstract][Full Text] [Related]
16. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke. Swank C; Almutairi S; Wang-Price S; Gao F Top Stroke Rehabil; 2020 Oct; 27(7):503-515. PubMed ID: 32077382 [No Abstract] [Full Text] [Related]
17. Effects of implantable peroneal nerve stimulation on gait quality, energy expenditure, participation and user satisfaction in patients with post-stroke drop foot using an ankle-foot orthosis. Schiemanck S; Berenpas F; van Swigchem R; van den Munckhof P; de Vries J; Beelen A; Nollet F; Geurts AC Restor Neurol Neurosci; 2015; 33(6):795-807. PubMed ID: 26484694 [TBL] [Abstract][Full Text] [Related]
18. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients. Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():211-215. PubMed ID: 28813820 [TBL] [Abstract][Full Text] [Related]
19. The gait and energy efficiency of stance control knee-ankle-foot orthoses: A literature review. Rafiaei M; Bahramizadeh M; Arazpour M; Samadian M; Hutchins SW; Farahmand F; Mardani MA Prosthet Orthot Int; 2016 Apr; 40(2):202-14. PubMed ID: 26055252 [TBL] [Abstract][Full Text] [Related]
20. A unilateral robotic knee exoskeleton to assess the role of natural gait assistance in hemiparetic patients. Lora-Millan JS; Sanchez-Cuesta FJ; Romero JP; Moreno JC; Rocon E J Neuroeng Rehabil; 2022 Oct; 19(1):109. PubMed ID: 36209096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]