These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28813839)

  • 1. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance.
    Miyake T; Kobayashi Y; Fujie MG; Sugano S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between magnitude of applied torque in pre-swing phase and gait change for prevention of trip in elderly people.
    Miyake T; Tsukune M; Kobayashi Y; Sugano S; Fujie MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6154-6157. PubMed ID: 28269657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-robot interaction tests on a novel robot for gait assistance.
    Tagliamonte NL; Sergi F; Carpino G; Accoto D; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650387. PubMed ID: 24187206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of voluntary modifications of gait pattern to reduce the knee adduction moment.
    van den Noort JC; Schaffers I; Snijders J; Harlaar J
    Hum Mov Sci; 2013 Jun; 32(3):412-24. PubMed ID: 23647833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immediate effect of Walkbot robotic gait training on neuromechanical knee stiffness in spastic hemiplegia: a case report.
    Kim DH; Shin YI; Joa KL; Shin YK; Lee JJ; You SJ
    NeuroRehabilitation; 2013; 32(4):833-8. PubMed ID: 23867409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-stride exposure to pulse torque assistance provided by a robotic exoskeleton at the hip and knee joints.
    McGrath RL; Sergi F
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():874-879. PubMed ID: 31374740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC; Goldberg SR; Pandy MG; Delp SL
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward goal-oriented robotic gait training: The effect of gait speed and stride length on lower extremity joint torques.
    McGrath RL; Pires-Fernandes M; Knarr B; Higginson JS; Sergi F
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():270-275. PubMed ID: 28813830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait.
    Moosabhoy MA; Gard SA
    Gait Posture; 2006 Dec; 24(4):493-501. PubMed ID: 16439130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, simulation and modelling of auxiliary exoskeleton to improve human gait cycle.
    Ashkani O; Maleki A; Jamshidi N
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):137-144. PubMed ID: 27896688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preswing knee flexion assistance is coupled with hip abduction in people with stiff-knee gait after stroke.
    Sulzer JS; Gordon KE; Dhaher YY; Peshkin MA; Patton JL
    Stroke; 2010 Aug; 41(8):1709-14. PubMed ID: 20576947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations.
    Mosconi D; Moreno Y; Siqueira A
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR; Hunt MA; Jones IC; Giffin JR; Birmingham TB
    J Biomech; 2008; 41(2):276-83. PubMed ID: 18061197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase-Synchronized Assistive Torque Control for the Correction of Kinematic Anomalies in the Gait Cycle.
    Aguirre-Ollinger G; Narayan A; Yu H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Nov; 27(11):2305-2314. PubMed ID: 31567098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knee Swing Phase Flexion Resistance Affects Several Key Features of Leg Swing Important to Safe Transfemoral Prosthetic Gait.
    Kent JA; Arelekatti VNM; Petelina NT; Johnson WB; Brinkmann JT; Winter AG; Major MJ
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():965-973. PubMed ID: 34018934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.