These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 28813841)
1. Design and preliminary evaluation of a multi-robotic system with pelvic and hip assistance for pediatric gait rehabilitation. Park EJ; Kang J; Su H; Stegall P; Miranda DL; Hsu WH; Karabas M; Phipps N; Agrawal SK; Goldfield EC; Walsh CJ IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():332-339. PubMed ID: 28813841 [TBL] [Abstract][Full Text] [Related]
2. Design of a lightweight, tethered, torque-controlled knee exoskeleton. Witte KA; Fatschel AM; Collins SH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056 [TBL] [Abstract][Full Text] [Related]
3. Exoskeleton for gait rehabilitation of children: Conceptual design. Cornejo JL; Santana JF; Salinas SA IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():452-454. PubMed ID: 28813861 [TBL] [Abstract][Full Text] [Related]
4. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
5. Development of a Prototype Overground Pelvic Obliquity Support Robot for Rehabilitation of Hemiplegia Gait. Hwang S; Lee S; Shin D; Baek I; Ham S; Kim W Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408083 [TBL] [Abstract][Full Text] [Related]
6. Design of a biologically inspired lower limb exoskeleton for human gait rehabilitation. Lyu M; Chen W; Ding X; Wang J; Bai S; Ren H Rev Sci Instrum; 2016 Oct; 87(10):104301. PubMed ID: 27802730 [TBL] [Abstract][Full Text] [Related]
7. Effects of assistance timing on metabolic cost, assistance power, and gait parameters for a hip-type exoskeleton. Lee J; Seo K; Lim B; Jang J; Kim K; Choi H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():498-504. PubMed ID: 28813869 [TBL] [Abstract][Full Text] [Related]
8. Development of Gait Rehabilitation System Capable of Assisting Pelvic Movement of Normal Walking. Jung C; Jung S; Chun MH; Lee JM; Park S; Kim SJ Acta Med Okayama; 2018 Aug; 72(4):407-417. PubMed ID: 30140090 [TBL] [Abstract][Full Text] [Related]
9. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD. Kang J; Vashista V; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1558-1567. PubMed ID: 28287978 [TBL] [Abstract][Full Text] [Related]
10. Rehabilitative Soft Exoskeleton for Rodents. Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858 [TBL] [Abstract][Full Text] [Related]
11. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation. Narayan J; Kumar Dwivedy S Proc Inst Mech Eng H; 2021 May; 235(5):530-545. PubMed ID: 33588634 [TBL] [Abstract][Full Text] [Related]
12. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults. Lee HJ; Lee S; Chang WH; Seo K; Shim Y; Choi BO; Ryu GH; Kim YH IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1549-1557. PubMed ID: 28186902 [TBL] [Abstract][Full Text] [Related]
13. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking. Patane F; Rossi S; Del Sette F; Taborri J; Cappa P IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566 [TBL] [Abstract][Full Text] [Related]
14. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results. Mazzoleni S; Battini E; Rustici A; Stampacchia G IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits. Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868 [TBL] [Abstract][Full Text] [Related]
16. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device. Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252 [TBL] [Abstract][Full Text] [Related]
17. A Transformer-Based Neural Network for Gait Prediction in Lower Limb Exoskeleton Robots Using Plantar Force. Ren J; Wang A; Li H; Yue X; Meng L Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514841 [TBL] [Abstract][Full Text] [Related]
19. Experimental studies on the human gait using a tethered pelvic assist device (T-PAD). Vashista V; Mustafa SK; Agrawal SK IEEE Int Conf Rehabil Robot; 2011; 2011():5975472. PubMed ID: 22275670 [TBL] [Abstract][Full Text] [Related]
20. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance. John SW; Murakami K; Komatsu M; Adachi S IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():387-393. PubMed ID: 28813850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]