BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28813850)

  • 1. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance.
    John SW; Murakami K; Komatsu M; Adachi S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():387-393. PubMed ID: 28813850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wearable robotic orthosis with a spring-assist actuator.
    Seungmin Jung ; Chankyu Kim ; Jisu Park ; Dongyoub Yu ; Jaehwan Park ; Junho Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5051-5054. PubMed ID: 28269403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application.
    Yap HK; Sebastian F; Wiedeman C; Yeow CH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1465-1470. PubMed ID: 28814026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Accordion-Inspired Foldable Pneumatic Actuators for Knee Assistive Devices.
    Fang J; Yuan J; Wang M; Xiao L; Yang J; Lin Z; Xu P; Hou L
    Soft Robot; 2020 Feb; 7(1):95-108. PubMed ID: 31566506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an assistive motorized hip orthosis: kinematics analysis and mechanical design.
    Olivier J; Bouri M; Ortlieb A; Bleuler H; Clavel R
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650495. PubMed ID: 24187310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically-inspired soft exosuit.
    Asbeck AT; Dyer RJ; Larusson AF; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650455. PubMed ID: 24187272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new powered orthosis with hip and ankle linkage for paraplegics walking.
    Nagai C; Hisada S; Obinata G; Genda E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650356. PubMed ID: 24187175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Soft Wearable Robotic Suit for Ankle and Hip Assistance: a Preliminary Study.
    Jin S; Guo S; Hashimoto K; Xiong X; Yamamoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1867-1870. PubMed ID: 30440760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking.
    Lenzi T; Carrozza MC; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):938-48. PubMed ID: 23529105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Computational Modeling of a Modular, Compliant Robotic Assembly for Human Lumbar Unit and Spinal Cord Assistance.
    Agarwal G; Robertson MA; Sonar H; Paik J
    Sci Rep; 2017 Oct; 7(1):14391. PubMed ID: 29089514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elbow functional compensation using a lightweight magnetorheological clutch.
    Clemente AM; Caballero AF; Rojas DB; Copaci DS; Lorente LM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5215-8. PubMed ID: 22255513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an automatic rotational orthosis for walking with arm swing.
    Fang J; Yang GY; Xie L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():264-269. PubMed ID: 28813829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel compliant actuator for wearable robotics applications.
    Claros M; Soto R; RodrĂ­guez JJ; CantĂș C; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2854-7. PubMed ID: 24110322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Shoulder Mechanism for Assisting Upper Arm Function with Distally Located Actuators.
    Jones M; Bouffard C; Hejrati B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6233-6236. PubMed ID: 31947267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.