These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 28813855)
1. An optimized design of a parallel robot for gait training. Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855 [TBL] [Abstract][Full Text] [Related]
2. A novel robot-assisted training approach for improving gait symmetry after stroke. Zadravec M; Olensek A; Rudolf M; Bizovicar N; Goljar N; Matjacic Z IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():222-227. PubMed ID: 28813822 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of end-effector Robot-Assisted Gait Training in subacute stroke patients: Clinical and gait outcomes from a pilot bi-centre study. Aprile I; Iacovelli C; Goffredo M; Cruciani A; Galli M; Simbolotti C; Pecchioli C; Padua L; Galafate D; Pournajaf S; Franceschini M NeuroRehabilitation; 2019; 45(2):201-212. PubMed ID: 31498139 [TBL] [Abstract][Full Text] [Related]
4. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot. Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581 [TBL] [Abstract][Full Text] [Related]
5. A novel Robotic Gait Training System (RGTS) may facilitate functional recovery after stroke: A feasibility and safety study. Lin LF; Huang SW; Chang KH; Ouyang JH; Liou TH; Lin YN NeuroRehabilitation; 2017; 41(2):453-461. PubMed ID: 28946579 [TBL] [Abstract][Full Text] [Related]
6. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial. Bae YH; Lee SM; Ko M Top Stroke Rehabil; 2017 May; 24(4):309-313. PubMed ID: 28102113 [TBL] [Abstract][Full Text] [Related]
7. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. Tomelleri C; Waldner A; Werner C; Hesse S IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689 [TBL] [Abstract][Full Text] [Related]
8. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study. Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203 [TBL] [Abstract][Full Text] [Related]
9. Adaptive position anticipation in a support robot for overground gait training enhances transparency. Everarts C; Vallery H; Bolliger M; Ronsse R IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650483. PubMed ID: 24187300 [TBL] [Abstract][Full Text] [Related]
10. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial. Rodrigues TA; Goroso DG; Westgate PM; Carrico C; Batistella LR; Sawaki L Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S165-S170. PubMed ID: 28796648 [TBL] [Abstract][Full Text] [Related]
11. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports. Bishop L; Khan M; Martelli D; Quinn L; Stein J; Agrawal S Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S135-S140. PubMed ID: 28661914 [TBL] [Abstract][Full Text] [Related]
12. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities. Eiammanussakul T; Sangveraphunsiri V J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109 [TBL] [Abstract][Full Text] [Related]
13. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
14. Functional evaluation of robot end-point assisted gait re-education in chronic stroke survivors. De Luca A; Lentino C; Vernetti H; Checchia GA; Giannoni P; Morasso P; Casadio M IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650513. PubMed ID: 24187328 [TBL] [Abstract][Full Text] [Related]
15. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation. Fong J; Crocher V; Tan Y; Oetomo D; Mareels I IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913 [TBL] [Abstract][Full Text] [Related]
16. Real-time closed-loop control of cognitive load in neurological patients during robot-assisted gait training. Koenig A; Novak D; Omlin X; Pulfer M; Perreault E; Zimmerli L; Mihelj M; Riener R IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):453-64. PubMed ID: 21827971 [TBL] [Abstract][Full Text] [Related]
17. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking. Martinez A; Lawson B; Goldfarb M IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848 [TBL] [Abstract][Full Text] [Related]
18. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: a randomized controlled study. Chang WH; Kim MS; Huh JP; Lee PK; Kim YH Neurorehabil Neural Repair; 2012 May; 26(4):318-24. PubMed ID: 22086903 [TBL] [Abstract][Full Text] [Related]
19. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework. Hussein S; Kruger J IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649 [TBL] [Abstract][Full Text] [Related]
20. [The use of a robot-assisted Gait Trainer GT1 in patients in the acute period of cerebral stroke: a pilot study]. Skvortsova VI; Ivanova GE; Kovrazhkina EA; Rumiantseva NA; Staritsyn AN; Suvorov AIu; Sogomonian EK Zh Nevrol Psikhiatr Im S S Korsakova; 2008; Suppl 23():28-34. PubMed ID: 19425367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]