These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 28813855)
21. Timing of intermittent torque control with wire-driven gait training robot lifting toe trajectory for trip avoidance. Miyake T; Kobayashi Y; Fujie MG; Sugano S IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():320-325. PubMed ID: 28813839 [TBL] [Abstract][Full Text] [Related]
22. Rehabilitation for hemiplegia using an upper limb training system based on a force direction. Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875 [TBL] [Abstract][Full Text] [Related]
23. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265 [TBL] [Abstract][Full Text] [Related]
24. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism. Pan L; Song A; Duan S; Yu Z Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413 [TBL] [Abstract][Full Text] [Related]
25. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits. Wang P; Low KH; Tow A IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557 [TBL] [Abstract][Full Text] [Related]
26. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Stein J; Bishop L; Stein DJ; Wong CK Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757 [TBL] [Abstract][Full Text] [Related]
27. Multidirectional transparent support for overground gait training. Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327 [TBL] [Abstract][Full Text] [Related]
28. Modulation of weight off-loading level over body-weight supported locomotion training. Wang P; Low KH; Lim PA; McGregor AH IEEE Int Conf Rehabil Robot; 2011; 2011():5975354. PubMed ID: 22275558 [TBL] [Abstract][Full Text] [Related]
29. A review on bio-cooperative control in gait rehabilitation. Koenig A; Omlin X; Novak D; Riener R IEEE Int Conf Rehabil Robot; 2011; 2011():5975454. PubMed ID: 22275652 [TBL] [Abstract][Full Text] [Related]
30. Effects of partial body-weight support and functional electrical stimulation on gait characteristics during treadmill locomotion: Pros and cons of saddle-seat-type body-weight support. Kataoka N; Hirai H; Hamilton T; Yoshikawa F; Kuroiwa A; Nagakawa Y; Watanabe E; Ninomaru Y; Saeki Y; Uemura M; Miyazaki F; Nakata H; Nishi T; Naritomi H; Krebs HI IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():381-386. PubMed ID: 28813849 [TBL] [Abstract][Full Text] [Related]
31. Hybrid position and orientation tracking for a passive rehabilitation table-top robot. Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902 [TBL] [Abstract][Full Text] [Related]
32. Applicability of a new robotic walking aid in a patient with cerebral palsy. Case report. Smania N; Gandolfi M; Marconi V; Calanca A; Geroin C; Piazza S; Bonetti P; Fiorini P; Cosentino A; Capelli C; Conte D; Bendinelli M; Munari D; Ianes P; Fiaschi A; Picelli A Eur J Phys Rehabil Med; 2012 Mar; 48(1):147-53. PubMed ID: 22543558 [TBL] [Abstract][Full Text] [Related]
33. Gait training in subacute non-ambulatory stroke patients using a full weight-bearing gait-assistance robot: A prospective, randomized, open, blinded-endpoint trial. Ochi M; Wada F; Saeki S; Hachisuka K J Neurol Sci; 2015; 353(1-2):130-6. PubMed ID: 25956233 [TBL] [Abstract][Full Text] [Related]
34. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients. Huang X; Naghdy F; Naghdy G; Du H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():511-515. PubMed ID: 28813871 [TBL] [Abstract][Full Text] [Related]
35. Virtual Reality to control active participation in a subacute stroke patient during robot-assisted gait training. Bergmann J; Krewer C; Müller F; Koenig A; Riener R IEEE Int Conf Rehabil Robot; 2011; 2011():5975407. PubMed ID: 22275610 [TBL] [Abstract][Full Text] [Related]
36. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
37. MIT-Skywalker: On the use of a markerless system. Goncalves RS; Hamilton T; Krebs HI IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():205-210. PubMed ID: 28813819 [TBL] [Abstract][Full Text] [Related]
38. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Straudi S; Manfredini F; Lamberti N; Zamboni P; Bernardi F; Marchetti G; Pinton P; Bonora M; Secchiero P; Tisato V; Volpato S; Basaglia N Trials; 2017 Feb; 18(1):88. PubMed ID: 28241776 [TBL] [Abstract][Full Text] [Related]
39. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy. Susko T; Swaminathan K; Krebs HI IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056 [TBL] [Abstract][Full Text] [Related]
40. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]