These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 28813871)
1. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients. Huang X; Naghdy F; Naghdy G; Du H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():511-515. PubMed ID: 28813871 [TBL] [Abstract][Full Text] [Related]
2. The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study. Huang X; Naghdy F; Naghdy G; Du H; Todd C J Stroke Cerebrovasc Dis; 2018 Jan; 27(1):221-228. PubMed ID: 28919312 [TBL] [Abstract][Full Text] [Related]
3. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial. Bergmann J; Krewer C; Bauer P; Koenig A; Riener R; Müller F Eur J Phys Rehabil Med; 2018 Jun; 54(3):397-407. PubMed ID: 29265791 [TBL] [Abstract][Full Text] [Related]
4. Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects. Khor KX; Chin PJH; Yeong CF; Su ELM; Narayanan ALT; Abdul Rahman H; Khan QI IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1864-1873. PubMed ID: 28410110 [TBL] [Abstract][Full Text] [Related]
6. Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study. Park DS; Lee DG; Lee K; Lee G J Stroke Cerebrovasc Dis; 2017 Oct; 26(10):2313-2319. PubMed ID: 28606661 [TBL] [Abstract][Full Text] [Related]
7. Effectiveness of Immersive Virtual Reality-Based Hand Rehabilitation Games for Improving Hand Motor Functions in Subacute Stroke Patients. Amin F; Waris A; Syed S; Amjad I; Umar M; Iqbal J; Omer Gilani S IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2060-2069. PubMed ID: 38801680 [TBL] [Abstract][Full Text] [Related]
8. Usability evaluation of low-cost virtual reality hand and arm rehabilitation games. Seo NJ; Arun Kumar J; Hur P; Crocher V; Motawar B; Lakshminarayanan K J Rehabil Res Dev; 2016; 53(3):321-34. PubMed ID: 27271199 [TBL] [Abstract][Full Text] [Related]
9. The Effects of Combined Virtual Reality Exercises and Robot Assisted Gait Training on Cognitive Functions, Daily Living Activities, and Quality of Life in High Functioning Individuals With Subacute Stroke. Akinci M; Burak M; Kasal FZ; Özaslan EA; Huri M; Kurtaran ZA Percept Mot Skills; 2024 Jun; 131(3):756-769. PubMed ID: 38418444 [TBL] [Abstract][Full Text] [Related]
10. Survivors of chronic stroke - participant evaluations of commercial gaming for rehabilitation. Paquin K; Crawley J; Harris JE; Horton S Disabil Rehabil; 2016 Oct; 38(21):2144-52. PubMed ID: 26728133 [TBL] [Abstract][Full Text] [Related]
11. Response to "Letter to the editor: Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial". Orihuela-Espina F; Roldán GF; Sánchez Villavicencio I; Palafox L; Leder R; Sucar LE; Hernández-Franco J J Hand Ther; 2016; 29(4):e13-e14. PubMed ID: 27765526 [No Abstract] [Full Text] [Related]
12. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke. Rong W; Tong KY; Hu XL; Ho SK Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757 [TBL] [Abstract][Full Text] [Related]
13. The Efficacy of a Haptic-Enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation. Yeh SC; Lee SH; Chan RC; Wu Y; Zheng LR; Flynn S J Healthc Eng; 2017; 2017():9840273. PubMed ID: 29230275 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. Taveggia G; Borboni A; Salvi L; Mulé C; Fogliaresi S; Villafañe JH; Casale R Eur J Phys Rehabil Med; 2016 Dec; 52(6):767-773. PubMed ID: 27406879 [TBL] [Abstract][Full Text] [Related]
15. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
16. Game-Based Virtual Reality Canoe Paddling Training to Improve Postural Balance and Upper Extremity Function: A Preliminary Randomized Controlled Study of 30 Patients with Subacute Stroke. Lee MM; Lee KJ; Song CH Med Sci Monit; 2018 Apr; 24():2590-2598. PubMed ID: 29702630 [TBL] [Abstract][Full Text] [Related]
17. An augmented reality system for upper-limb post-stroke motor rehabilitation: a feasibility study. Assis GA; Corrêa AG; Martins MB; Pedrozo WG; Lopes Rde D Disabil Rehabil Assist Technol; 2016 Aug; 11(6):521-8. PubMed ID: 25367103 [TBL] [Abstract][Full Text] [Related]
18. A virtual reality system integrated with robot-assisted haptics to simulate pinch-grip task: Motor ingredients for the assessment in chronic stroke. Yeh SC; Lee SH; Chan RC; Chen S; Rizzo A NeuroRehabilitation; 2014; 35(3):435-49. PubMed ID: 25227546 [TBL] [Abstract][Full Text] [Related]
19. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. da Silva Cameirão M; Bermúdez I Badia S; Duarte E; Verschure PF Restor Neurol Neurosci; 2011; 29(5):287-98. PubMed ID: 21697589 [TBL] [Abstract][Full Text] [Related]
20. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. Baniqued PDE; Stanyer EC; Awais M; Alazmani A; Jackson AE; Mon-Williams MA; Mushtaq F; Holt RJ J Neuroeng Rehabil; 2021 Jan; 18(1):15. PubMed ID: 33485365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]