These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 28813872)
1. MIT-Skywalker: Evaluating comfort of bicycle/saddle seat. Goncalves RS; Hamilton T; Daher AR; Hirai H; Krebs HI IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():516-520. PubMed ID: 28813872 [TBL] [Abstract][Full Text] [Related]
2. MIT-Skywalker: On the use of a markerless system. Goncalves RS; Hamilton T; Krebs HI IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():205-210. PubMed ID: 28813819 [TBL] [Abstract][Full Text] [Related]
3. MIT-Skywalker: considerations on the Design of a Body Weight Support System. Gonçalves RS; Krebs HI J Neuroeng Rehabil; 2017 Sep; 14(1):88. PubMed ID: 28877750 [TBL] [Abstract][Full Text] [Related]
4. MIT-Skywalker: A Novel Gait Neurorehabilitation Robot for Stroke and Cerebral Palsy. Susko T; Swaminathan K; Krebs HI IEEE Trans Neural Syst Rehabil Eng; 2016 Oct; 24(10):1089-1099. PubMed ID: 26929056 [TBL] [Abstract][Full Text] [Related]
5. Effects of partial body-weight support and functional electrical stimulation on gait characteristics during treadmill locomotion: Pros and cons of saddle-seat-type body-weight support. Kataoka N; Hirai H; Hamilton T; Yoshikawa F; Kuroiwa A; Nagakawa Y; Watanabe E; Ninomaru Y; Saeki Y; Uemura M; Miyazaki F; Nakata H; Nishi T; Naritomi H; Krebs HI IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():381-386. PubMed ID: 28813849 [TBL] [Abstract][Full Text] [Related]
6. Interlimb coordination evoked by unilateral mechanical perturbation during body-weight supported gait. Artemiadis PK; Krebs HI IEEE Int Conf Rehabil Robot; 2011; 2011():5975513. PubMed ID: 22275709 [TBL] [Abstract][Full Text] [Related]
7. Applicability of a new robotic walking aid in a patient with cerebral palsy. Case report. Smania N; Gandolfi M; Marconi V; Calanca A; Geroin C; Piazza S; Bonetti P; Fiorini P; Cosentino A; Capelli C; Conte D; Bendinelli M; Munari D; Ianes P; Fiaschi A; Picelli A Eur J Phys Rehabil Med; 2012 Mar; 48(1):147-53. PubMed ID: 22543558 [TBL] [Abstract][Full Text] [Related]
8. On the control of the MIT-skywalker. Artemiadis PK; Krebs HI Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1287-91. PubMed ID: 21095920 [TBL] [Abstract][Full Text] [Related]
10. Exploration of Two Training Paradigms Using Forced Induced Weight Shifting With the Tethered Pelvic Assist Device to Reduce Asymmetry in Individuals After Stroke: Case Reports. Bishop L; Khan M; Martelli D; Quinn L; Stein J; Agrawal S Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S135-S140. PubMed ID: 28661914 [TBL] [Abstract][Full Text] [Related]
11. ROBOT - Assisted Rehabilitation in Patients After Stroke. Kefaliakos A; Pliakos I; Kalokerinou A; Mechili A; Diomidous M Stud Health Technol Inform; 2014; 202():316. PubMed ID: 25000084 [No Abstract] [Full Text] [Related]
12. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial. Rodrigues TA; Goroso DG; Westgate PM; Carrico C; Batistella LR; Sawaki L Am J Phys Med Rehabil; 2017 Oct; 96(10 Suppl 1):S165-S170. PubMed ID: 28796648 [TBL] [Abstract][Full Text] [Related]
13. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke. Liu Q; Wang C; Long JJ; Sun T; Duan L; Zhang X; Zhang B; Shen Y; Shang W; Lin Z; Wang Y; Xia J; Wei J; Li W; Wu Z J Healthc Eng; 2018; 2018():3867243. PubMed ID: 29736231 [TBL] [Abstract][Full Text] [Related]
14. Let's do this together: Bi-Manu-Interact, a novel device for studying human haptic interactive behavior. Ivanova E; Krause A; Schalicke M; Schellhardt F; Jankowski N; Achner J; Schmidt H; Joebges M; Kruger J IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():708-713. PubMed ID: 28813903 [TBL] [Abstract][Full Text] [Related]
15. Effects of a novel bicycle saddle on symptoms and comfort in cyclists. Keytel LR; Noakes TD S Afr Med J; 2002 Apr; 92(4):295-8. PubMed ID: 12056361 [TBL] [Abstract][Full Text] [Related]
16. Multidirectional transparent support for overground gait training. Vallery H; Lutz P; von Zitzewitz J; Rauter G; Fritschi M; Everarts C; Ronsse R; Curt A; Bolliger M IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650512. PubMed ID: 24187327 [TBL] [Abstract][Full Text] [Related]
17. Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study. Mizukami M; Yoshikawa K; Kawamoto H; Sano A; Koseki K; Asakwa Y; Iwamoto K; Nagata H; Tsurushima H; Nakai K; Marushima A; Sankai Y; Matsumura A Disabil Rehabil Assist Technol; 2017 Feb; 12(2):197-204. PubMed ID: 27017889 [TBL] [Abstract][Full Text] [Related]
18. Research of the BWS system for lower extremity rehabilitation robot. Zhang X; Li W; Li J; Cai X IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():240-245. PubMed ID: 28813825 [TBL] [Abstract][Full Text] [Related]
19. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger. Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the effects on dynamic balance and aerobic capacity between objective and subjective methods of high-intensity robot-assisted gait training in chronic stroke patients: a randomized controlled trial. Bae YH; Lee SM; Ko M Top Stroke Rehabil; 2017 May; 24(4):309-313. PubMed ID: 28102113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]