These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 28813872)
21. Feedforward model based arm weight compensation with the rehabilitation robot ARMin. Just F; Ozen O; Tortora S; Riener R; Rauter G IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796 [TBL] [Abstract][Full Text] [Related]
22. Automatic Assessment of a Rollator-User's Condition During Rehabilitation Using the i-Walker Platform. Ballesteros J; Urdiales C; Martinez AB; Tirado M IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2009-2017. PubMed ID: 28459694 [TBL] [Abstract][Full Text] [Related]
23. The effects of treadmill walking combined with obstacle-crossing on walking ability in ambulatory patients after stroke: a pilot randomized controlled trial. Jeong YG; Koo JW Top Stroke Rehabil; 2016 Dec; 23(6):406-412. PubMed ID: 27207495 [TBL] [Abstract][Full Text] [Related]
24. Predicting Functional Recovery in Chronic Stroke Rehabilitation Using Event-Related Desynchronization-Synchronization during Robot-Assisted Movement. Caimmi M; Visani E; Digiacomo F; Scano A; Chiavenna A; Gramigna C; Molinari Tosatti L; Franceschetti S; Molteni F; Panzica F Biomed Res Int; 2016; 2016():7051340. PubMed ID: 27057546 [TBL] [Abstract][Full Text] [Related]
25. Gait training of poststroke patients assisted by the Walkaround (body postural support). Dragin AS; Konstantinović LM; Veg A; Schwirtlich LB Int J Rehabil Res; 2014 Mar; 37(1):22-8. PubMed ID: 23820295 [TBL] [Abstract][Full Text] [Related]
26. Rehabilitation for hemiplegia using an upper limb training system based on a force direction. Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875 [TBL] [Abstract][Full Text] [Related]
27. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Li L; Ding L; Chen N; Mao Y; Huang D; Li L Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020 [TBL] [Abstract][Full Text] [Related]
29. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke. Westerveld AJ; Aalderink BJ; Hagedoorn W; Buijze M; Schouten AC; Kooij Hv IEEE Trans Biomed Eng; 2014 Oct; 61(10):2646-54. PubMed ID: 24860023 [TBL] [Abstract][Full Text] [Related]
30. Expanding stroke telerehabilitation services to rural veterans: a qualitative study on patient experiences using the robotic stroke therapy delivery and monitoring system program. Cherry CO; Chumbler NR; Richards K; Huff A; Wu D; Tilghman LM; Butler A Disabil Rehabil Assist Technol; 2017 Jan; 12(1):21-27. PubMed ID: 26135221 [TBL] [Abstract][Full Text] [Related]
31. Efficacy of the Regent Suit training during a post-acute stroke rehabilitation process: description of a case report. Dal Farra F; Boem D; Magni S; Bernasconi L; Monticone M G Ital Med Lav Ergon; 2011; 33(1):74-83. PubMed ID: 21417139 [TBL] [Abstract][Full Text] [Related]
32. HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. Dovat L; Lambercy O; Gassert R; Maeder T; Milner T; Leong TC; Burdet E IEEE Trans Neural Syst Rehabil Eng; 2008 Dec; 16(6):582-91. PubMed ID: 19144590 [TBL] [Abstract][Full Text] [Related]
33. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits. Wang P; Low KH; Tow A IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557 [TBL] [Abstract][Full Text] [Related]
34. [The use of a robot-assisted Gait Trainer GT1 in patients in the acute period of cerebral stroke: a pilot study]. Skvortsova VI; Ivanova GE; Kovrazhkina EA; Rumiantseva NA; Staritsyn AN; Suvorov AIu; Sogomonian EK Zh Nevrol Psikhiatr Im S S Korsakova; 2008; Suppl 23():28-34. PubMed ID: 19425367 [TBL] [Abstract][Full Text] [Related]
35. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265 [TBL] [Abstract][Full Text] [Related]
36. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Watanabe H; Tanaka N; Inuta T; Saitou H; Yanagi H Arch Phys Med Rehabil; 2014 Nov; 95(11):2006-12. PubMed ID: 25010538 [TBL] [Abstract][Full Text] [Related]
37. Effects of added inertia and body weight support on lateral balance control during walking. Pennycott A; Wyss D; Vallery H; Riener R IEEE Int Conf Rehabil Robot; 2011; 2011():5975415. PubMed ID: 22275618 [TBL] [Abstract][Full Text] [Related]
38. A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study. Bae SJ; Jang SH; Seo JP; Chang PH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():7-12. PubMed ID: 28813785 [TBL] [Abstract][Full Text] [Related]
39. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation. Burnfield JM; Buster TW; Goldman AJ; Corbridge LM; Harper-Hanigan K Hum Mov Sci; 2016 Jun; 47():16-28. PubMed ID: 26845732 [TBL] [Abstract][Full Text] [Related]
40. The effectiveness of locomotor therapy using robotic-assisted gait training in subacute stroke patients: a randomized controlled trial. Schwartz I; Sajin A; Fisher I; Neeb M; Shochina M; Katz-Leurer M; Meiner Z PM R; 2009 Jun; 1(6):516-23. PubMed ID: 19627940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]