These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28813872)

  • 41. A wearable robotic knee orthosis for gait training: a case-series of hemiparetic stroke survivors.
    Wong CK; Bishop L; Stein J
    Prosthet Orthot Int; 2012 Mar; 36(1):113-20. PubMed ID: 22082495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mechanism for elbow exoskeleton for customised training.
    Manna SK; Dubey VN
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1597-1602. PubMed ID: 28814048
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity.
    Coenen P; van Werven G; van Nunen MP; Van Dieën JH; Gerrits KH; Janssen TW
    J Rehabil Med; 2012 Apr; 44(4):331-7. PubMed ID: 22453772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the development of a walking rehabilitation device with a large workspace.
    Gosselin C; Laliberté T
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975360. PubMed ID: 22275564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bicycle seat designs and their effect on pelvic angle, trunk angle, and comfort.
    Bressel E; Larson BJ
    Med Sci Sports Exerc; 2003 Feb; 35(2):327-32. PubMed ID: 12569224
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke.
    Morone G; Bragoni M; Iosa M; De Angelis D; Venturiero V; Coiro P; Pratesi L; Paolucci S
    Neurorehabil Neural Repair; 2011 Sep; 25(7):636-44. PubMed ID: 21444654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Validation of the efficiency of a robotic rehabilitation training system for recovery of severe plegie hand motor function after a stroke.
    Tanabe H; Ikuta M; Morita Y
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():579-584. PubMed ID: 28813882
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Only the nose knows: penile hemodynamic study of the perineum-saddle interface in men with erectile dysfunction utilizing bicycle saddles and seats with and without nose extensions.
    Munarriz R; Huang V; Uberoi J; Maitland S; Payton T; Goldstein I
    J Sex Med; 2005 Sep; 2(5):612-9. PubMed ID: 16422818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of the robot assisted gait therapy in rehabilitation of patients with stroke and spinal cord injury.
    Sale P; Franceschini M; Waldner A; Hesse S
    Eur J Phys Rehabil Med; 2012 Mar; 48(1):111-21. PubMed ID: 22543557
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: a randomized controlled trial.
    Zhu Z; Cui L; Yin M; Yu Y; Zhou X; Wang H; Yan H
    Clin Rehabil; 2016 Jun; 30(6):587-93. PubMed ID: 26130657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation.
    Ho NS; Tong KY; Hu XL; Fung KL; Wei XJ; Rong W; Susanto EA
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975340. PubMed ID: 22275545
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Autonomous hip exoskeleton saves metabolic cost of walking uphill.
    Seo K; Lee J; Park YJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism.
    Pan L; Song A; Duan S; Yu Z
    Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Utilization of kinematical redundancy of a rehabilitation robot to produce compliant motions under limitation on actuator performance.
    Goto T; Dobashi H; Yoshikawa T; Loureiro RCV; Harwin WS; Miyamura Y; Nagai K
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():646-651. PubMed ID: 28813893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Medical Mechatronics for Healthcare.
    Liu YH; Moratal D; Escudero J; Huang HP
    J Healthc Eng; 2018; 2018():9675482. PubMed ID: 29850008
    [No Abstract]   [Full Text] [Related]  

  • 57. Implicit visual distortion modulates human gait.
    Kim SJ; Krebs HI
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3079-82. PubMed ID: 22254990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Novel Multimodal Cognitive Interaction for Walker-Assisted Rehabilitation Therapies.
    Scheidegger WM; de Mello RC; Sierra M SD; Jimenez MF; Munera MC; Cifuentes CA; Frizera-Neto A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():905-910. PubMed ID: 31374745
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of a Soft Robotics Module for Active Control of Sitting Comfort.
    Roozendaal T; Verwaal M; Buso A; Scharff RBN; Song Y; Vink P
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334768
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Editorial: Robot-assisted rehabilitation for neurological disorders.
    Carbone G; Gonçalves RS
    Front Robot AI; 2022; 9():1014681. PubMed ID: 36185973
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.