BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 28813875)

  • 1. Rehabilitation for hemiplegia using an upper limb training system based on a force direction.
    Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upper limb training/assessment program using passive force controllable rehabilitation system.
    Kikuchi T; Sato C; Yamabe K; Abe I; Ohno T; Kugimiya S; Inoue A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():505-510. PubMed ID: 28813870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP; Treadway E; Gillespie RB; Remy CD; Krishnan C
    Restor Neurol Neurosci; 2018; 36(6):693-708. PubMed ID: 30400120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.
    Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R
    J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot.
    Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Stride Management Assist Gait Training for Poststroke Hemiplegia: A Single Center, Open-Label, Randomized Controlled Trial.
    Tanaka N; Matsushita S; Sonoda Y; Maruta Y; Fujitaka Y; Sato M; Simomori M; Onaka R; Harada K; Hirata T; Kinoshita S; Okamoto T; Okamura H
    J Stroke Cerebrovasc Dis; 2019 Feb; 28(2):477-486. PubMed ID: 30420315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial.
    Lee MJ; Lee JH; Lee SM
    Technol Health Care; 2018; 26(4):659-666. PubMed ID: 30124459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the operation of rehabilitation interfaces in active rehabilitation exercises for upper limb hemiplegic patients: Interfaces for lateral and bilateral exercises.
    Eom SH; Lee EH
    Technol Health Care; 2016 Apr; 24 Suppl 2():S607-23. PubMed ID: 27163324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Randomized Controlled Trial of Gait Training Using Gait Exercise Assist Robot (GEAR) in Stroke Patients with Hemiplegia.
    Tomida K; Sonoda S; Hirano S; Suzuki A; Tanino G; Kawakami K; Saitoh E; Kagaya H
    J Stroke Cerebrovasc Dis; 2019 Sep; 28(9):2421-2428. PubMed ID: 31307899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance-based robotic assistance during rhythmic arm exercises.
    Leconte P; Ronsse R
    J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke.
    Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs.
    Masiero S; Celia A; Armani M; Rosati G
    Aging Clin Exp Res; 2006 Dec; 18(6):531-5. PubMed ID: 17255643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System Framework of Robotics in Upper Limb Rehabilitation on Poststroke Motor Recovery.
    Zhang K; Chen X; Liu F; Tang H; Wang J; Wen W
    Behav Neurol; 2018; 2018():6737056. PubMed ID: 30651892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot.
    Hu XL; Tong KY; Wei XJ; Rong W; Susanto EA; Ho SK
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1065-74. PubMed ID: 23932795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of Upper Extremity Robotic Therapy in Subacute Poststroke Hemiplegia: An Exploratory Randomized Trial.
    Takahashi K; Domen K; Sakamoto T; Toshima M; Otaka Y; Seto M; Irie K; Haga B; Takebayashi T; Hachisuka K
    Stroke; 2016 May; 47(5):1385-8. PubMed ID: 27006452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.