BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 28813883)

  • 1. Development of a series wrapping cam mechanism for energy transfer in wearable arm support applications.
    Schroeder JS; Perry JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():585-590. PubMed ID: 28813883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spring operated wearable enhancer for arm rehabilitation (SpringWear) after stroke.
    Ji Chen ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4893-4896. PubMed ID: 28269367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining User Intent of Partly Dynamic Shoulder Tasks in Individuals With Chronic Stroke Using Pattern Recognition.
    Kopke JV; Ellis MD; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):350-358. PubMed ID: 31751245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Shoulder Mechanism for Assisting Upper Arm Function with Distally Located Actuators.
    Jones M; Bouffard C; Hejrati B
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6233-6236. PubMed ID: 31947267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wearable Shoulder Exoskeleton with Spring-Cam Mechanism for Customizable, Nonlinear Gravity Compensation.
    Asgari M; Hall PT; Moore BS; Crouch DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4926-4929. PubMed ID: 33019093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity.
    Musampa NK; Mathieu PA; Levin MF
    Exp Brain Res; 2007 Aug; 181(4):579-93. PubMed ID: 17476486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a wearable hand exoskeleton for exercising flexion/extension of the fingers.
    Jo I; Lee J; Park Y; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1615-1620. PubMed ID: 28814051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Arm Weight Support Training to Promote Recovery of Upper Limb Function for Subacute Patients after Stroke with Different Levels of Arm Impairments.
    Chan IH; Fong KN; Chan DY; Wang AQ; Cheng EK; Chau PH; Chow KK; Cheung HK
    Biomed Res Int; 2016; 2016():9346374. PubMed ID: 27517053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target-dependent differences between free and constrained arm movements in chronic hemiparesis.
    Beer RF; Dewald JP; Dawson ML; Rymer WZ
    Exp Brain Res; 2004 Jun; 156(4):458-70. PubMed ID: 14968276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Training Game to Coordinate Torques Produced Between Arms.
    Cai NM; Mandana A; Reddy NA; Gurari N
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():447-452. PubMed ID: 31374670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Position-dependent torque coupling and associated muscle activation in the hemiparetic upper extremity.
    Ellis MD; Acosta AM; Yao J; Dewald JP
    Exp Brain Res; 2007 Feb; 176(4):594-602. PubMed ID: 16924488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A soft wearable robot for the shoulder: Design, characterization, and preliminary testing.
    O'Neill CT; Phipps NS; Cappello L; Paganoni S; Walsh CJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1672-1678. PubMed ID: 28814060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multijoint reflexes of the stroke arm: neural coupling of the elbow and shoulder.
    Sangani SG; Starsky AJ; McGuire JR; Schmit BD
    Muscle Nerve; 2007 Nov; 36(5):694-703. PubMed ID: 17628498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-wire assist suit concept, for mobile and lightweight multiple degree of freedom hip assistance.
    John SW; Murakami K; Komatsu M; Adachi S
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():387-393. PubMed ID: 28813850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke.
    Meeker C; Park S; Bishop L; Stein J; Ciocarlie M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1203-1210. PubMed ID: 28813985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation.
    Lambelet C; Lyu M; Woolley D; Gassert R; Wenderoth N
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():726-733. PubMed ID: 28813906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel robotic system for quantifying arm kinematics and kinetics: description and evaluation in therapist-assisted passive arm movements post-stroke.
    Culmer PR; Jackson AE; Makower SG; Cozens JA; Levesley MC; Mon-Williams M; Bhakta B
    J Neurosci Methods; 2011 Apr; 197(2):259-69. PubMed ID: 21414360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of trunk restraint combined with intensive task practice on poststroke upper extremity reach and function: a pilot study.
    Woodbury ML; Howland DR; McGuirk TE; Davis SB; Senesac CR; Kautz S; Richards LG
    Neurorehabil Neural Repair; 2009 Jan; 23(1):78-91. PubMed ID: 18812433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation.
    Pehlivan AU; Celik O; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975428. PubMed ID: 22275629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of double-joint arm posture in adults with unilateral brain damage.
    Mihaltchev P; Archambault PS; Feldman AG; Levin MF
    Exp Brain Res; 2005 Jun; 163(4):468-86. PubMed ID: 15690154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.