These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 28813900)
1. Mechanical design of EFW Exo II: A hybrid exoskeleton for elbow-forearm-wrist rehabilitation. Bian H; Chen Z; Wang H; Zhao T IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():689-694. PubMed ID: 28813900 [TBL] [Abstract][Full Text] [Related]
2. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair. Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331 [TBL] [Abstract][Full Text] [Related]
3. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911 [TBL] [Abstract][Full Text] [Related]
4. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
5. Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Lambelet C; Temiraliuly D; Siegenthaler M; Wirth M; Woolley DG; Lambercy O; Gassert R; Wenderoth N J Neuroeng Rehabil; 2020 Oct; 17(1):132. PubMed ID: 33028354 [TBL] [Abstract][Full Text] [Related]
6. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation. Wu KY; Su YY; Yu YL; Lin KY; Lan CC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880 [TBL] [Abstract][Full Text] [Related]
7. A Novel Bilateral Underactuated Upper Limb Exoskeleton for Post-Stroke Bimanual ADL Training. Kwok TM; Yu H IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3299-3309. PubMed ID: 38814776 [TBL] [Abstract][Full Text] [Related]
8. A mechanism for elbow exoskeleton for customised training. Manna SK; Dubey VN IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1597-1602. PubMed ID: 28814048 [TBL] [Abstract][Full Text] [Related]
9. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity. Lee DJ; Bae SJ; Jang SH; Chang PH IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():622-627. PubMed ID: 28813889 [TBL] [Abstract][Full Text] [Related]
10. Mechanical design of a distal arm exoskeleton for stroke and spinal cord injury rehabilitation. Pehlivan AU; Celik O; O'Malley MK IEEE Int Conf Rehabil Robot; 2011; 2011():5975428. PubMed ID: 22275629 [TBL] [Abstract][Full Text] [Related]
11. Inverse kinematic analysis and trajectory planning of a modular upper limb rehabilitation exoskeleton. Li G; Fang Q; Xu T; Zhao J; Cai H; Zhu Y Technol Health Care; 2019; 27(S1):123-132. PubMed ID: 31045532 [TBL] [Abstract][Full Text] [Related]
12. Design and Performance Analysis of a Bioelectronic Controlled Hybrid Serial-Parallel Wrist Exoskeleton. Zhang X; Wang M; Wang H; Wang F; Chen L; Mu W; Wang J; Kang X IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2665-2675. PubMed ID: 37285244 [TBL] [Abstract][Full Text] [Related]
13. The eWrist - A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. Lambelet C; Lyu M; Woolley D; Gassert R; Wenderoth N IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():726-733. PubMed ID: 28813906 [TBL] [Abstract][Full Text] [Related]
14. Rehabilitation strategy for post-stroke recovery using an innovative elbow exoskeleton. Manna SK; Dubey VN Proc Inst Mech Eng H; 2019 Jun; 233(6):668-680. PubMed ID: 31043118 [TBL] [Abstract][Full Text] [Related]
15. Ethical considerations in providing an upper limb exoskeleton device for stroke patients. Bulboacă AE; Bolboacă SD; Bulboacă AC Med Hypotheses; 2017 Apr; 101():61-64. PubMed ID: 28351495 [TBL] [Abstract][Full Text] [Related]
16. A springs actuated finger exoskeleton: From mechanical design to spring variables evaluation. Bortoletto R; Mello AN; Piovesan D IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1319-1325. PubMed ID: 28814003 [TBL] [Abstract][Full Text] [Related]
17. Autonomous hip exoskeleton saves metabolic cost of walking uphill. Seo K; Lee J; Park YJ IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():246-251. PubMed ID: 28813826 [TBL] [Abstract][Full Text] [Related]
18. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure. Xiao F; Gao Y; Wang Y; Zhu Y; Zhao J Technol Health Care; 2017 Jul; 25(S1):3-11. PubMed ID: 28582886 [TBL] [Abstract][Full Text] [Related]
19. Design of Wrist Gimbal: a forearm and wrist exoskeleton for stroke rehabilitation. Martinez JA; Ng P; Lu S; Campagna MS; Celik O IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650459. PubMed ID: 24187276 [TBL] [Abstract][Full Text] [Related]
20. Design and Interaction Control of a New Bilateral Upper-Limb Rehabilitation Device. Miao Q; Zhang M; Wang Y; Xie SQ J Healthc Eng; 2017; 2017():7640325. PubMed ID: 29104747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]