BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28813902)

  • 1. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.
    Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMU: A transparent 3D robotic manipulandum for upper-limb rehabilitation.
    Fong J; Crocher V; Tan Y; Oetomo D; Mareels I
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():771-776. PubMed ID: 28813913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rehabilitation for hemiplegia using an upper limb training system based on a force direction.
    Ogata K; Hirabayashi Y; Kubota K; Hasegawa Y; Tsuji T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():533-538. PubMed ID: 28813875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot.
    Milot MH; Hamel M; Provost PO; Bernier-Ouellet J; Dupuis M; Letourneau D; Briere S; Michaud F
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute position calculation for a desktop mobile rehabilitation robot based on three optical mouse sensors.
    Zabaleta H; Valencia D; Perry J; Veneman J; Keller T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2069-72. PubMed ID: 22254744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Sensor Orientation Tracking for a Façade-Cleaning Robot.
    Vega-Heredia M; Muhammad I; Ghanta S; Ayyalusami V; Aisyah S; Elara MR
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T; Sangveraphunsiri V
    J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism.
    Pan L; Song A; Duan S; Yu Z
    Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive control with state-dependent modeling of patient impairment for robotic movement therapy.
    Bower C; Taheri H; Wolbrecht E
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650460. PubMed ID: 24187277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper-Limb Rehabilitation of Patients with Neuromotor Deficits Using Impedance-Based Control of a 6-DOF Robot.
    Behidj A; Achiche S; Mohebbi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training.
    Mazzoleni S; Puzzolante L; Zollo L; Dario P; Posteraro F
    IEEE Trans Haptics; 2014; 7(2):175-80. PubMed ID: 24968381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic biomechanical model for assessing and monitoring robot-assisted upper-limb therapy.
    Abdullah HA; Tarry C; Datta R; Mittal GS; Abderrahim M
    J Rehabil Res Dev; 2007; 44(1):43-62. PubMed ID: 17551857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.
    Chiang MH; Lin HT
    Sensors (Basel); 2011; 11(12):11476-94. PubMed ID: 22247676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial-Robotic Motion Tracking in End-Effector-Based Rehabilitation Robots.
    Passon A; Schauer T; Seel T
    Front Robot AI; 2020; 7():554639. PubMed ID: 33501318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.