BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28813902)

  • 21. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training.
    Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.
    Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effector force requirements to enable robotic systems to provide assisted exercise in people with upper limb impairment after stroke.
    Jackson AE; Culmer PR; Levesley MC; Cozens JA; Makower SG; Bhakta BB
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975391. PubMed ID: 22275595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feedforward model based arm weight compensation with the rehabilitation robot ARMin.
    Just F; Ozen O; Tortora S; Riener R; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():72-77. PubMed ID: 28813796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multidimensional Capacitive Sensing for Robot-Assisted Dressing and Bathing.
    Erickson Z; Clever HM; Gangaram V; Turk G; Liu CK; Kemp CC
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():224-231. PubMed ID: 31374634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An optimized design of a parallel robot for gait training.
    Maddalena M; Saadat M; Rastegarpanah A; Loureiro RCV
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():418-423. PubMed ID: 28813855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal design of an alignment-free two-DOF rehabilitation robot for the shoulder complex.
    Galinski D; Sapin J; Dehez B
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650502. PubMed ID: 24187317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pilot study on the optimal speeds for passive wrist movements by a rehabilitation robot of stroke patients: A functional NIRS study.
    Bae SJ; Jang SH; Seo JP; Chang PH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():7-12. PubMed ID: 28813785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of complementing a robotic upper limb rehabilitation system with video games on the engagement of the participants: a study focusing on muscle activities.
    Li C; Rusák Z; Horváth I; Ji L
    Int J Rehabil Res; 2014 Dec; 37(4):334-42. PubMed ID: 25221845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tracking motor improvement at the subtask level during robot-aided neurorehabilitation of stroke patients.
    Panarese A; Colombo R; Sterpi I; Pisano F; Micera S
    Neurorehabil Neural Repair; 2012 Sep; 26(7):822-33. PubMed ID: 22374174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and Validation of a Kinematically Accurate Upper-Limb Exoskeleton Digital Twin for Stroke Rehabilitation.
    Ratschat A; Lomba TMC; Gasperina SD; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fully embedded myoelectric control for a wearable robotic hand orthosis.
    Ryser F; Butzer T; Held JP; Lambercy O; Gassert R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():615-621. PubMed ID: 28813888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.
    Resquín F; Cuesta Gómez A; Gonzalez-Vargas J; Brunetti F; Torricelli D; Molina Rueda F; Cano de la Cuerda R; Miangolarra JC; Pons JL
    Med Eng Phys; 2016 Nov; 38(11):1279-1288. PubMed ID: 27692878
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Humanoid assessing rehabilitative exercises.
    Simonov M; Delconte G
    Methods Inf Med; 2015; 54(2):114-21. PubMed ID: 24986076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.